Algorithms in Comparative Genomics

Universität Bielefeld, SS 2023

Dr. Marília D. V. Braga • Dr. Roland Wittler
https://gi.cebitec.uni-bielefeld.de/teaching/2023summer/cg
Exercise sheet 8, 2.6.2023

Exercise 1 (Optimal cover of component tree)

Given canonical circular chromosomes

$$
\begin{aligned}
& \mathbb{A}=(02 \overline{7} 6 \overline{5} 34810 \overline{12} 9 \overline{11} 13 \overline{1} 141621171918202227232524262815) \\
& \mathbb{B}=(012345678910111213141516171819202122232425262728)
\end{aligned}
$$

1. Draw the relational (or the breakpoint) diagram of \mathbb{A} and \mathbb{B}.
(You can use the Java program InversionVisualization provided on the course website: enter the values for chromosome \mathbb{A}, without the first value (0) and assume that the first vertex of the output diagram is 0^{h} and the last vertex is 0^{t}.)
2. Construct both the chained component tree $\Upsilon_{\mathbf{M}}(\mathbb{A}, \mathbb{B})$ and the component tree $\Upsilon_{\circ}(\mathbb{A}, \mathbb{B})$.
3. Find an optimal cover (i.e. a cover with minimum cost) for $\Upsilon_{\circ}(\mathbb{A}, \mathbb{B})$.
4. Compute the inversion distance $\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})$.

Exercise 2 (Bounds for the SCJ distance)

Theoretical bounds for the SCJ distance with respect to the DCJ and the inversion distances are

$$
\begin{gathered}
\mathrm{d}_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{SCJ}}(\mathbb{A}, \mathbb{B}) \leq 4 \mathrm{~d}_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B}) \\
2 \mathrm{~d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{SJJ}}(\mathbb{A}, \mathbb{B}) \leq 4 \mathrm{~d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})
\end{gathered}
$$

For each one of these four bounds:
Show that it is tight by giving an example of pairs of mutually distinct genomes that fulfill it.

