Algorithms in Comparative Genomics

Universität Bielefeld, SS 2023
Dr. Marília D. V. Braga • Dr. Roland Wittler
https://gi.cebitec.uni-bielefeld.de/teaching/2023summer/cg
Exercise sheet 9, 9.6.2023

Exercise 1 (Singular DCJ-indel model)

Consider the following singular genomes:

$$
\begin{aligned}
& \mathbb{A}=\left[\begin{array}{lll}
a_{1} & 4 & 1
\end{array}\right]\left[\begin{array}{lllll}
a_{2} & 6 & a_{3} & 3 & a_{4} \\
2 & a_{5} & 5
\end{array}\right]\left[\begin{array}{lll}
a_{6} & a_{7} 78 & a_{8} \\
9
\end{array}\right]\left[a_{9}\right] \text { and } \\
& \left.\mathbb{B}=\left[\begin{array}{lllllll}
b_{1} & 1 & b_{2} & 2 & b_{3} & 3 & b_{4}
\end{array} 4 b_{5}\right]\left[\begin{array}{lll}
5 & b_{6} & 6
\end{array}\right] \quad\left[\begin{array}{llll}
b_{7} & 7 & 8 & b_{8}
\end{array}\right] \quad \text { (} b_{9} b_{10}\right)
\end{aligned}
$$

1. Give the sets of genes $\mathcal{G}_{\star}, \mathcal{A}$ and \mathcal{B} and construct the relational graph $R G(\mathbb{A}, \mathbb{B})$.
2. For each component C of the relational graph $R G(\mathbb{A}, \mathbb{B})$:
(a) Give the type of C (cycle, singleton, $\mathbb{A} \mathbb{B}$-path, $\mathbb{A} \mathbb{A}$-path or $\mathbb{B} \mathbb{B}$-path).
(b) Give the number of runs $\Lambda(C)$ and the run-type of $C(\varepsilon, \mathcal{A}, \mathcal{B}, \mathcal{A B}$ or $\mathcal{B A})$;
(c) Compute the minimum number of indels $\lambda(C)$ that are necessary for sorting C separately.
3. Find all chains of deducting recombinations and compute the DCJ-indel distance $d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})$.

Exercise 2 (Deducting path recombinations)

For each of the following deducting path recombinations, draw the cuts and the resultants of the given types with the joins, so that the given $\Delta_{\text {DCJ }}^{\lambda}$ is achieved. (Recall that both cuts must be done in the same genome and each cut either breaks an adjacency or is next to a telomere.)

1. Example: $\Delta_{\text {DCJ }}^{\lambda}=-1$

2. $\Delta_{\mathrm{DCJ}}^{\lambda}=-1$

$$
\mathbb{A}_{A_{\mathcal{B}}}+\mathbb{B} \mathbb{B}_{\mathcal{B}}
$$

$$
\Rightarrow \quad \mathbb{A B}_{\varepsilon} \quad+\quad \mathbb{A B}_{\mathcal{A B}}
$$

\Rightarrow
3. $\Delta_{\mathrm{DCJ}}^{\lambda}=-1$

$$
\mathbb{A B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}
$$

$\Rightarrow \quad \mathbb{A B}_{\mathcal{A}} \quad+\quad \mathbb{A B}_{\mathcal{B}}$
\Rightarrow
4. $\Delta_{\mathrm{DCJ}}^{\lambda}=-2$
$\mathbb{A A}_{\mathcal{A B}}+\quad \mathbb{B B}_{\mathcal{A B}}$
$\Rightarrow \quad \mathbb{A B}_{\mathcal{A}} \quad+\quad \mathbb{A B}_{\mathcal{B}}$

\Rightarrow

