# Algorithms in Comparative Genomics 

Universität Bielefeld, WS 2023/24
Prof. Dr. Jens Stoye • Dr. Marília D. V. Braga
https://gi.cebitec.uni-bielefeld.de/teaching/2023winter/alggr
Exercise sheet 11, 26.01.2024

## Exercise 1 (Calculating Distances)

Given two linear, unichromosomal genomes

$$
A=[12-4-35-6]
$$

and

$$
B=[1-3-2456]
$$

1. What is the breakpoint distance between $A$ and $B$ ?
2. What is the SCJ distance between $A$ and $B$ ?
3. Give an SCJ sorting scenario from $A$ to $B$.
4. Draw the adjacency graph of $A$ and $B$.
5. What is the DCJ distance between $A$ and $B$ ?
6. Give a DCJ sorting scenario from $A$ to $B$.

Exercise 2 (Cooking Recipe) The explode chromosome operation (ECO) ${ }^{1}$ transforms a chromosome $\left[g_{1} \ldots g_{k}\right]$ or $\left(g_{1} \ldots g_{k}\right)$ of arbitrary length $k$ into $k$ linear chromosomes $[g 1], \ldots,\left[g_{k}\right]$ with one marker $g_{i}$ each. The assemble chromosome operation $(A C O)^{2}$ transforms a set of linear chromosomes $\left\{\left[C_{1}\right], \ldots,\left[C_{l}\right]\right\}$ into a linear chromosome $[S]$ or circular chromosome $(S)$ with $S=C_{1} C_{2} \ldots C_{l}$ for any orientation and order of $C_{1}$ to $C_{1}$.
For example: $\left[\begin{array}{ll}1 & 2\end{array}\right],[45] \xrightarrow{E C O}[1],[2],[3],[45] \equiv[1],[-5-4],[3],[-2] \xrightarrow{A C O}[1-5-43-2]$.

1. Familiarize yourself with the operations. Give optimal sorting scenarios for the following:

(b) Sort [1 2 3] into [1], [2], [3].
(c) Sort [1], (2 34 ), [5] into [1 234 4], [5].
2. Use the "cooking recipe" from the lecture to derive a general formula for the minimum number of ECOs and ACOs needed to transform one genome into the other. You do not need to invent a data structure for this. The "quantity" you need for the cooking recipe can be derived directly from the genomes themselves.

## Exercise 3 (Feather Median)

Given $2 k+3$ genomes $G_{1}, G_{2}, G_{3}, \ldots G_{2 k+3}$ and an algorithm to compute the median $M_{d}(A, B, C)$ of three genomes $(A, B, C)$ under a distance model $d$. The Feather Median ${ }^{3}$ is defined as

$$
\begin{equation*}
M_{f}\left(G_{1}, G_{2}, G_{3}, \ldots G_{2 k+3-2}, G_{2 k+3-1}, G_{2 k+3}\right)=M_{d}\left(G_{2 k+3-1}, M_{f}\left(G_{1}, G_{2}, G_{3}, \ldots G_{2 k+3-2}\right), G_{2 k+3}\right) \tag{1}
\end{equation*}
$$

with recursion base

$$
\begin{equation*}
M_{f}\left(G_{1}, G_{2}, G_{3}\right)=M_{d}\left(G_{1}, G_{2}, G_{3}\right) \tag{2}
\end{equation*}
$$

[^0]

1. Disprove (e.g. via counter example): The Feather Median under the breakpoint distance is always a breakpoint median ${ }^{4}$.
2. Prove or disprove: No metric $d$ on a set with two or more distinct elements exists, under which the Feather Median is always a true Median. (Spoiler 1, 2, 3, 4, 5, 6).
[^1]
[^0]:    ${ }^{1}$ which I made up.
    ${ }^{2}$ which I also made up :)
    ${ }^{3}$ which I also made up ;)

[^1]:    ${ }^{4}$ The true median of a set $K \subseteq S$ under metric $d$ on space $S$ being the element $M_{d} \in S$ that minimizes $m\left(M_{d}\right)=$ $\sum_{k \in K} d\left(M_{d}, k\right)$.

