Algorithms in Comparative Genomics

Universität Bielefeld, WS 2023/24 Prof. Dr. Jens Stoye · Dr. Marília D. V. Braga https://gi.cebitec.uni-bielefeld.de/teaching/2023winter/alggr

Exercise sheet 11, 26.01.2024

Exercise 1 (Calculating Distances)

Given two linear, unichromosomal genomes

$$A = [12 - 4 - 35 - 6]$$

and

B = [1 - 3 - 2456]

- 1. What is the breakpoint distance between A and B?
- 2. What is the SCJ distance between A and B?
- 3. Give an SCJ sorting scenario from A to B.
- 4. Draw the adjacency graph of A and B.
- 5. What is the DCJ distance between A and B?
- 6. Give a DCJ sorting scenario from A to B.

Exercise 2 (Cooking Recipe) The explode chromosome operation $(ECO)^1$ transforms a chromosome $[g_1...g_k]$ or $(g_1...g_k)$ of arbitrary length k into k linear chromosomes $[g_1], ..., [g_k]$ with one marker g_i each. The assemble chromosome operation $(ACO)^2$ transforms a set of linear chromosomes $\{[C_1], ..., [C_l]\}$ into a linear chromosome [S] or circular chromosome (S) with $S = C_1 C_2 ... C_l$ for any orientation and order of C_1 to C_l .

For example: $[1 2 3], [4 5] \xrightarrow{ECO} [1], [2], [3], [45] \equiv [1], [-5 - 4], [3], [-2] \xrightarrow{ACO} [1 - 5 - 4 3 - 2].$

- 1. Familiarize yourself with the operations. Give optimal sorting scenarios for the following:
 - (a) Sort [1 2 3], (4 5) into [1 3 2], (4 5).
 - (b) Sort [1 2 3] into [1], [2], [3].
 - (c) Sort [1], (234), [5] into [1234], [5].
- 2. Use the "cooking recipe" from the lecture to derive a general formula for the minimum number of ECOs and ACOs needed to transform one genome into the other. You do not need to invent a data structure for this. The "quantity" you need for the cooking recipe can be derived directly from the genomes themselves.

Exercise 3 (Feather Median)

Given 2k + 3 genomes $G_1, G_2, G_3, \dots G_{2k+3}$ and an algorithm to compute the median $M_d(A, B, C)$ of three genomes (A, B, C) under a distance model d. The Feather Median³ is defined as

$$M_f(G_1, G_2, G_3, \dots G_{2k+3-2}, G_{2k+3-1}, G_{2k+3}) = M_d(G_{2k+3-1}, M_f(G_1, G_2, G_3, \dots G_{2k+3-2}), G_{2k+3})$$
(1)

with recursion base

$$M_f(G_1, G_2, G_3) = M_d(G_1, G_2, G_3)$$
⁽²⁾

¹which I made up.

²which I also made up :)

³which I also made up ;)

- 1. Disprove (e.g. via counter example): The Feather Median under the breakpoint distance is always a breakpoint median⁴.
- 2. Prove or disprove: No metric d on a set with two or more distinct elements exists, under which the Feather Median is always a true Median. (Spoiler 1, 2, 3, 4, 5, 6).

⁴The true median of a set $K \subseteq S$ under metric d on space S being the element $M_d \in S$ that minimizes $m(M_d) = \sum_{k \in K} d(M_d, k)$.