Algorithms in Genome Research Winter 2023/2024

Exercises

Number 3, Discussion: 2023 November 24

- 1. The Shortest Common Superstring problem (SCP) is defined as follows. Given a set of fragments \mathcal{F} , find a string S of minimal length such that f or its reverse complementy \overline{f} is a substring of S for all $f \in \mathcal{F}$. Use the overlap graph to solve SCP for the fragments below. Notes:
 - For taking reverse complements into account, each fragment can be represented by two vertices corresponding respectively to its head and to its tail.
 - For this dataset it suffices to consider only the edges corresponding to overlaps of length at least 3.

$f_1 = \mathtt{ATAT}$	$f_4= extsf{TATA}$
$f_2 = \mathtt{T}\mathtt{A}\mathtt{T}\mathtt{T}$	$f_5={\tt TTAT}$
$f_3={\tt TTAT}$	$f_6={\tt AATA}$

2. Consider the following set of reads, assuming that you know already that all of them originate from the same DNA strand.

$r_1 = \texttt{ATCCA}$	$r_6 = \texttt{GCAAG}$
$r_2 = \texttt{AGAGC}$	$r_7 = \texttt{AGATC}$
$r_3 = \texttt{AAGAT}$	$r_8={\tt TAGAG}$
$r_4 = \texttt{GAGCA}$	$r_9 = \texttt{AGAGC}$
$r_5 = \mathtt{CCATA}$	$r_{10} = \texttt{GAGCA}$

- (a) Build the corresponding overlap graph with a minimum overlap of 2.
- (b) Find a shortest common superstring for all reads. Is the coverage uniform? If not, find a layout with a more uniform coverage.
- 3. While in single-end sequencing, the sequencer reads a fragment from only one end to the other, in paired-end sequencing it reads the fragments from both ends. This gives a mate pair and a good estimation of the distance between them.

How can mate pairs help in the assembling process?