Algorithms in Genome Research
 Winter 2023/2024

Exercises

Number 8, Discussion: 2024 January 12

1. Given a list of peaks from a Tandem Mass Spectrum (MS/MS) for peptide de-novo sequencing, one important obstacle for recovering the peptide sequence is to assign peaks to the main ion types b and y (prefix and suffix strings of the peptide sequence, respectively).
If we know that only b-ions are present in the spectrum, then recovering the sequence becomes simple. Describe an algorithm to do so: Input are the parent mass W and an ordered list of prefix masses w_{1}, \ldots, w_{k}. (Some peaks may be missing, though.)
2. We modify the above problem such that there are "noise peaks" (of unknown origin) in the mass spectrum. Describe an algorithm that finds a peptide sequence maximizing the number of explained peaks. The algorithm should run in $O(k|\Sigma|)$ time where k is the number of peaks and Σ is the underlying alphabet of amino acids. Hint: Use dynamic programming.
3. Word puzzling:

- How many different words can be built by using all the letters of the string $S=$ GLÜHWEIN exactly once? Compute the actual value.
- How many different words can be built by using all the letters of the string $S=$ TEELICHT exactly once? Note that all words need to have the same length and must use the letters the specified number of times: For ABA, there are three such words, AAB, ABA, BAA.
- Try and find a general formula for the number of different words wordnum (S) that can be created from the letters of a string S. Hint: For $S=$ GLÜHWEIN, the formula depends only on the length of S, but not for $S=$ TEELICHT - what else does it depend on?

4. Suppose that we do not know the order of characters in a string: For example, the strings AACCC, ACACC, ..., CCCAA are indistinguishable to us. We call such "strings without order" compomers (denoted $\mathrm{A}_{2} \mathrm{C}_{3}$ for our example). The length of a compomer is the length of the corresponding string (5 in our example).

- Let $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ be our alphabet, then there exist 4 compomers of length $1\left(\mathrm{~A}_{1}, \mathrm{C}_{1}, \mathrm{G}_{1}, \mathrm{~T}_{1}\right)$ and 10 compomers of length $2\left(\mathrm{~A}_{2}, \mathrm{~A}_{1} \mathrm{C}_{1}, \mathrm{~A}_{1} \mathrm{G}_{1}, \mathrm{~A}_{1} \mathrm{~T}_{1}, \mathrm{C}_{2}, \mathrm{C}_{1} \mathrm{G}_{1}, \mathrm{C}_{1} \mathrm{~T}_{1}, \mathrm{G}_{2}, \mathrm{G}_{1} \mathrm{~T}_{1}, \mathrm{~T}_{2}\right)$. How many compomers exist of lengths 3 and 4?
- Derive a general formula for the number of compomers of length n over an arbitrary alphabet Σ of size σ.

