Algorithms in Comparative Genomics

Universität Bielefeld, SS 2024

Dr. Marília D. V. Braga • Dr. Roland Wittler • M.Sc. Leonard Bohnenkämper
https://gi.cebitec.uni-bielefeld.de/teaching/2024summer/cg
Exercise sheet 12, 28.06.2024

Exercise 1 (Computing IMin)

Develop an $O(n)$ algorithm for finding the bounds of intervals $\operatorname{IMin}\left[p_{i}\right]$ for all p_{i} in a permutation p of size n. (Suggestion: Find the left and right bounds separately. You find a hint (almost a spoiler) in Algorithm 2 in Bergeron et al. "Computing common intervals of K permutations with applications to modular decomposition of graphs", SIAM J. Descrete Math., 2008)

Exercise 2 (Generators for common intervals)

For the permutation (4321567),

1. compute IMin and IMax,
2. compute generator $(R, L)=($ Sup, Inf $)$,
3. visualize the intervals (i.. $R[i])$ and ($L[i] . . i$), and
4. add pointers to indicate Support.

Exercise 3 (Combining generators)

Prove (in your own words) the following lemma:
Lemma. Let $\left(R_{1}, L_{1}\right)$ and $\left(R_{2}, L_{2}\right)$ be generators for common intervals of two sets \mathcal{P}_{1} and \mathcal{P}_{2}. The pair $\left(\min \left(R_{1}, R_{2}\right), \max \left(L_{1}, L_{2}\right)\right)$ is a generator for the common intervals of $\mathcal{P}_{1} \cup \mathcal{P}_{2}$.
Note that $\min \left(R_{1}, R_{2}\right)$ at position i is defined as $\min \left(R_{1}[i], R_{2}[i]\right)$ and $\max \left(L_{1}, L_{2}\right)$ is defined analogously.

Exercise 4 (Commuting intervals)

Find five different commuting collections \mathcal{C}_{i} of intervals over $i d_{4}$ with $\left|\mathcal{C}_{i}\right|=7$. (Hint: Do not forget the trivial intervals.)

