Algorithms in Comparative Genomics

Universität Bielefeld, SS 2024
Dr. Marília D. V. Braga • Dr. Roland Wittler • M.Sc. Leonard Bohnenkämper
https://gi.cebitec.uni-bielefeld.de/teaching/2024summer/cg
Exercise sheet 14, 12.07.2024

Exercise 1 (Number of maximal intervals)

Prove the following statement:
The number of maximal intervals grows in general as a quadratic function of the length of the sequence.

Exercise 2 (INT is commuting (Didier et al., 2007))

The rank intervals for a given string are commuting, i.e., if $\operatorname{INT}[k]$ and $\operatorname{INT}\left[k^{\prime}\right]$ are two rank intervals, then $I N T[k] \cap I N T\left[k^{\prime}\right] \in\left\{\emptyset, I N T[k], I N T\left[k^{\prime}\right]\right\}$. More precisely, if $I N T[k] \cap I N T\left[k^{\prime}\right] \neq \emptyset$ we have:

1. $I N T[k] \subseteq I N T\left[k^{\prime}\right]$ if and only if $\operatorname{RANK}[S[k]] \leq R A N K\left[S\left[k^{\prime}\right]\right]$;
2. $I N T[k] \supseteq I N T\left[k^{\prime}\right]$ if and only if $\operatorname{RANK}[S[k]] \geq \operatorname{RANK}\left[S\left[k^{\prime}\right]\right]$;
3. $I N T[k]=I N T\left[k^{\prime}\right]$ if and only if $\operatorname{RANK}[S[k]]=\operatorname{RANK}\left[S\left[k^{\prime}\right]\right]$.

Prove one of the assertions.

Exercise 3 (Range Minimum Queries)

Have a look at the following paper to answer the questions below:
Bender, M. A., and Farach-Colton, M. The LCA problem revisited. Proceedings of CPM, 1776 (Chapter 9), 88-94, 2000.

1. What is the LCA problem?
2. What is the RMQ problem?

3 . What is the ± 1 RMQ problem?
4. Which problem is reduced to which, and what are the known or induced time complexities for preprocessing and query each?
5. What is the relation to the rank distance in Didier's algorithm?

