Algorithms in Comparative Genomics

Universität Bielefeld, SS 2024
Dr. Marília D. V. Braga • Dr. Roland Wittler • M.Sc. Leonard Bohnenkämper
https://gi.cebitec.uni-bielefeld.de/teaching/2024summer/cg
Exercise sheet 2, 21.04.2023

Exercise 1 (Breakpoint and SCJ distances)

Given two canonical genomes
$\mathbb{A}=\left[\begin{array}{lll}3 & 4 & \overline{8}\end{array}\right]\left[\begin{array}{llll}2 & 1 & 7 & 5\end{array}\right] \quad\left(1112 \overline{13} 9\right.$ 10) $\left[\begin{array}{lll}15 & \overline{14}\end{array}\right]$ and
$\mathbb{B}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ (67) [89101112131415] ,

1. What is the breakpoint distance between \mathbb{A} and \mathbb{B} ?
2. What is the SCJ distance between \mathbb{A} and \mathbb{B} ?
3. Explain the difference between the two distances (if any).

Exercise 2 (Bounds for SCJ distance)

Theoretical bounds for the SCJ distance with respect to the breakpoint distance are

$$
\mathrm{d}_{\mathrm{BP}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{SCJ}}(\mathbb{A}, \mathbb{B}) \leq 2 \mathrm{~d}_{\mathrm{BP}}(\mathbb{A}, \mathbb{B})
$$

Give examples of pairs of mutually distinct genomes showing that these bounds are tight.

Exercise 3 (SCJ median)

Consider the following canonical genomes:

$$
\mathbb{G}_{1}=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right], \mathbb{G}_{2}=\left[\begin{array}{lllll}
1 & 2 & \overline{3} & 5 & 4
\end{array}\right], \mathbb{G}_{3}=\left[\begin{array}{lllll}
2 & \overline{3} & 1 & 4 & 5
\end{array}\right] \text { and } \mathbb{G}_{4}=\left[\begin{array}{lllll}
2 & 3 & \overline{1} & 4 & 5
\end{array}\right] .
$$

Now let $\mathcal{S}^{3}=\left\{\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}\right\}$ and $\mathcal{S}^{4}=\mathcal{S}^{3} \cup\left\{\mathbb{G}_{4}\right\}$.
For each of the two sets \mathcal{S}^{3} and \mathcal{S}^{4} :

1. Compute a general SCJ median $\mathbb{M}_{\text {SCJ }}^{k}$ of \mathcal{S}^{k}.
2. Is there another SCJ median of \mathcal{S}^{k} that is distinct from $\mathbb{M}_{\mathrm{SCJ}}^{k}$?
(Justify your answer by giving a distinct median or explaining why it does not exist.)
3. Is $\mathbb{M}_{S C J}^{3}$ also a breakpoint median of $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{3} ?

If $n o$: Compute a breakpoint median of $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{3}.
If yes: Is there another breakpoint median of $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{3} that is distinct from $\mathbb{M}_{\text {SCJ }}^{3}$?
(Justify your answer by giving a distinct median or explaining why it does not exist.)

Exercise 4 (Linear SCJ Median)

(3 pts)
Find a polynomial time algorithm to calculate the linear SCJ median for k canonical genomes $\mathbb{G}_{1} \ldots \mathbb{G}_{k}$, that is, the genome \mathbb{M}_{l} consisting only of linear chromosomes that minimizes $m_{l}\left(\mathbb{M}_{l}\right)=\sum_{i=1}^{k} d_{S C J}\left(\mathbb{M}_{l}, \mathbb{G}_{i}\right)$.

