Algorithms in Comparative Genomics

Universität Bielefeld, SS 2024

Dr. Marília D. V. Braga • Dr. Roland Wittler • M.Sc. Leonard Bohnenkämper
https://gi.cebitec.uni-bielefeld.de/teaching/2024summer/cg
Exercise sheet 1, 12.04.2024

Exercise 1 (Algorithm for breakpoint distance)

Devise a linear time algorithm for computing the breakpoint distance $d_{B P}(\mathbb{A}, \mathbb{B})$, where \mathbb{A} and \mathbb{B} are a pair of canonical genomes and can contain multiple linear or circular chromosomes.

Exercise 2 (Number of String representations)

1. Write down all string representations for the following singular genomes.

- $\mathbb{A}=\{[1 \overline{2} 3][45]\}$
- $\mathbb{B}=\{[\overline{1} \overline{3} 2]$ (45) $\}$
- $\mathbb{C}=\left\{\left[\begin{array}{lll}2 & 3 & 1\end{array}\right](4)\right\}$

2. Develop a general formula for the number of string representations of singular genomes

Exercise 3 (Breakpoint distance)

Give the breakpoint distance for all parings of the below genomes.

$$
\begin{aligned}
\mathbb{A} & =\left\{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right. \\
\mathbb{B} & =\left\{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\right\} \\
\mathbb{C} & =\left\{\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right]\right.
\end{aligned}
$$

Exercise 4 (Sorting Permutations)

(5 pts \& Cookies for the entire class)

Problem 1 Given a linear chromosome $[s]$ with s a signed permutation on \mathbb{N}, find the minimum number of operations needed to transform $[s]$ into the sorted chromosome $[123 \ldots]$ using the following operations:

- GNI: Exchange two elements, i.e. ...a...b... \rightarrow...b...a...,
- IGI: Exchange two elements and invert their signs, i.e. ...a...b... \rightarrow... $\bar{b} \ldots \bar{a} \ldots$,
- SGN: Change the sign of a single element, i.e. ...a... \rightarrow... $\bar{a} \ldots$

Note that the three operations can be used in any order and multiplicity.

