A reminder on NP-completeness

Kassian Kobert \& Roland Wittler

Seminar "Karp's 21 problems" (SoSe 2024)

Outline

NP-completeness

Proving NP-completeness

Example: Clique (from Satisfiability)

Problems

Optimization problem: Find a solution optimizing an objective function, e.g., minimizing a cost or maximizing a score function.

Decision problem: Yes/No question: Is there a solution?

Complexity: Optimization at least as hard as decision.
(Otherwise we could optimize to decide.)
\Rightarrow To show hardness, we usually use the decision problem.

Complexity classes

P contains all problems for which a deterministic algorithm exists that can solve a problem instance in polynomial time.
NP contains all problems for which a non-determ. algorithm exists that can solve a problem instance in polynomial time.
NP contains all problems for which a deterministic algorithm exists that can verify whether a given certificate is a correct solution in polynomial time.
Or short:
$P=$ efficiently solvable,
$N P=$ efficiently verifiable.

Obviously $P \subseteq N P$, but: $P \stackrel{?}{=} N P$

Reducibility

A problem Q^{\prime} is reducible to a problem Q if every instance of Q^{\prime} can be formulated as an instance of Q so that the solution S of problem Q corresponds to the solution S^{\prime} of problem Q^{\prime}.

Reducibility

A problem Q^{\prime} is reducible to a problem Q if every instance of Q^{\prime} can be formulated as an instance of Q so that the solution S of problem Q corresponds to the solution S^{\prime} of problem Q^{\prime}.

Problem Q^{\prime} is polynomial-time reducible to Q (shortly: $Q^{\prime} \propto Q$) if the reduction takes only polynomial time.

NP-hardness, NP-completeness

A problem Q is NP-hard if $Q^{\prime} \propto Q$ for every $Q^{\prime} \in$ NP.
(... at least as hard as any problem in NP.)

A problem Q is NP-complete if it is NP-hard and $Q \in$ NP.
(... not harder than NP.)

- If some NP-complete problem is solvable in polynomial time, then $\mathrm{P}=\mathrm{NP}$.
- If some problem of NP is not solvable in polynomial time, then no NP-complete problem is solvable in polynomial time.

NP-hardness, NP-completeness

$P \neq N P$

$P=N P$

NP-completeness

"Hard" does not mean "impossible"

- small instances
- run time heuristics
- exactness heuristics
- approximation
- restriction
- parametrization (fixed parameter tractability)

Outline

NP-completeness

Proving NP-completeness

Example: Clique (from Satisfiability)

Proving NP-completeness

To prove NP-completeness of a problem Q, you usually do:
(A) Show that $Q \in$ NP, i.e. poly-time verifiable.
(B) Show that Q is NP-hard:
(1) Choose a known NP-complete problem Q^{\prime}.
(2) Find a reduction f from Q^{\prime} to Q.
(3) Show that f is poly-time.
(3) Show that for any instance I :

There is a solution for I on $Q^{\prime} \Leftrightarrow$ there is a solution for $f(I)$ on Q.
($\Rightarrow Q$ at least as hard as Q^{\prime}
\Rightarrow at least as hard as any problem in NP.)

Karp provides B. 1 and B.2.
Our exercise: A, B. 3 and B.4.

Outline

NP-completeness

Proving NP-completeness

Example: Clique (from Satisfiability)

Example: Clique (from Satisfiability)

CLIQUE

INPUT: graph G, positive integer k

PROPERTY: G has a set of k mutually adjacent nodes.

Example: Clique (from Satisfiability)

CLIQUE variants

Maximum clique problem: output a maximum clique.
Weighted maximum clique problem: for a weighted graph, output a clique with maximum total weight.
Maximal clique listing problem: list all maximal cliques.
k-clique problem: output a clique with k vertices.
Clique decision problem: Boolean version of k-clique problem ("Karp's variant").

Example: Clique (from Satisfiability)

History of CLIQUE

- Both the clique listing problem and the term clique itself from the social sciences: find groups of people who all know each other.
- NP-hardness of decision problem: implicitely by Cook (1970) and also known to Reiter. Explicit proof by Karp (1972)
- hard to approximate (Garey \& Johnson, 1978)
- no fixed-parameter tractable algorithm is possible (Chen et. al, 2006)
- many applications: Chemistry (molecular docking), bioinformatics (phylogenetics, protein structure prediction), sociology (social networks), mathematics, ...

Example: Clique (from Satisfiability)

SATISFIABILITY

INPUT: Clauses $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}$

PROPERTY:

The conjunction of the given clauses is satisfiable; i.e., there i a set $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n} ; \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$ such that
a) S does not contain a complementary pair of literals and b) $\mathrm{S} \cap \mathrm{C}_{\mathrm{k}} \neq \emptyset, \mathrm{k}=1,2, \ldots, \mathrm{p}$.

Example: Clique (from Satisfiability)

SATISFIABILITY \propto CLIQUE

$$
\begin{aligned}
& \mathrm{N}=\left\{\langle\sigma, i\rangle \mid \sigma \text { is a literal and occurs in } \mathrm{C}_{\mathrm{i}}\right\} \\
& \mathrm{A}=\{\{\langle\sigma, i\rangle,\langle\delta, j\rangle\} \mid i \neq j \text { and } \sigma \neq \bar{\delta}\} \\
& \mathrm{k}=\mathrm{p}, \text { the number of clauses. }
\end{aligned}
$$

