Sequence Analysis 3

Summer 2024

Exercises

Number 2, Discussion: 2024-April-25

1. Develop a polynomial-time algorithm that finds the longest increasing subsequence in an array $X[1,2, \ldots, n]$ of n numbers.
2. Draw a deterministic finite automaton that recognizes the set of strings over the alphabet $\{\mathrm{a}, \mathrm{b}\}$ that start with an a and do not contain ba.
3. Provide an infinite family of strings for which each strings has a trie of its conjugates (rotations) that is of quadratic size.
4. Make deterministic and minimize the following two nondeterministic finite automata:
(a) $Q=\{1,2\} ; \delta(1, \mathrm{a})=\emptyset, \delta(1, \mathrm{~b})=\{1,2\}, \delta(1, \varepsilon)=\{1\}, \delta(2, \mathrm{a})=\{2\}, \delta(2, \mathrm{~b})=\emptyset$, $\delta(2, \varepsilon)=\{1,2\} ; q_{0}=1 ; F=\{2\}$.
(b) $Q=\{1,2,3\}, \delta(1, \mathrm{a})=\{2\}, \delta(1, \mathrm{~b})=\emptyset, \delta(2, \mathrm{a})=\{2\}, \delta(2, \mathrm{~b})=\{2,3\}, \delta(3, \mathrm{a})=\emptyset$, $\delta(3, \mathrm{~b})=\emptyset ; q_{0}=1, F=\{3\}$.
5. Analyse the efficiency of the Aho-Corasick automaton:
(a) the time to construct the automaton for a set of k patterns of maximal length l;
(b) the time to search in a text of length n.
6. Give the matching statistics of the pattern $p=$ abaaba for the text $t=$ aabcbabaaabaabaab.
