Sequence Analysis 3

Summer 2024

Exercises

Number 3, Discussion: 2024-05-02

For these exercises, do not consider the reverse complement of k-mers.
Notations:

- The i-th character of a string s is noted $\mathrm{s}[\mathrm{i}]$.
- The concatenation of two strings is noted ".". Exemple: "A"."C" = "AC"
- The concatenation of two integers is also noted ".".

Let \mathbf{R} be the set of read \{GTAGAGCTG, TCGAGCTGTG, GAGAGCTGT\}.

- Compute the set of all 7-mers present in \mathbf{R}. How many letters do you need to represent this set?
- Draw the associated de Bruijn graph.
- Compute the set of unitigs from the 7-mers of \mathbf{R}. Let's call it \mathbf{U}. How many letters do you need to represent \mathbf{U} ?

Say we are given a function code, that maps characters to integers, such that:
$\operatorname{code}(\mathrm{A})=1$
$\operatorname{code}(\mathrm{C})=2$
code(T) $=3$
code(G) $=4$
Let's define a hash function \mathbf{h}, that hashes a string s ($\mathrm{s}=\mathrm{s}[1] \cdot \mathrm{s}[2] \cdot \ldots \cdot \mathrm{s}[\mathrm{n}]$), by simply concatenating the code of each character of $s(h(s)=\operatorname{code}(s[1]) \cdot \operatorname{code}(s[2]) \cdot \ldots \cdot \operatorname{code}(s[n]))$. Exemple: $h($ AACTG $)=11234$.

- Using BBHash, compute an MPHF on the 7-mers of R. Use an array of size 7. In case of collisions, add another array of size 6, then another of size 5, etc.
- Write down the hash of every 7-mer.
- Using these hashes, write an array that maps each 7-mer of \mathbf{R} to the unitig in which it appears.
- Using the MPHF you computed, the array you just built, and \mathbf{U}, search for the sequence $\mathbf{Q}=$ GGCGAGCTGTGGG in the sets of reads. What is the proportion of shared 7-mers between \mathbf{Q} and \mathbf{R} ?

