Sequence Analysis 3

Universität Bielefeld, SS 2024
Prof. Dr. Jens Stoye • Dr. Lucas Robidou ${ }^{1}$
https://gi.cebitec.uni-bielefeld.de/teaching/2024summer/sa3
Exercise sheet 5, 16.5.2024 - Discussion 23.05.2024

Exercise 1 (Apply the skew Algorithm)

Apply the skew Algorithm, including recursive steps to $S=$ aaaaa.
Exercise 2 (Why the recursion works (adapted from Ohlebusch, 2013))
For $i \neq j$ with $i \not \equiv 1 \bmod 3$ and $j \not \equiv 1 \bmod 3$, prove that $S_{i}<S_{j}$ if and only if $\bar{S}_{\tau(i)}<\bar{S}_{\tau(j)}$ where \bar{S} is the concatenation of $[\bar{i} \mid i \leq 1 \leq n, i \equiv 2 \bmod 3]$ and $[\bar{i} \mid i \leq 1 \leq n, i \equiv 3 \equiv 0 \bmod 3]$ with \bar{i} the lexicographic name of the 3 -mer at position i and

$$
\tau(i)=\left\{\begin{array}{l}
\frac{i+1}{3} \text { if } i \equiv 2 \quad \bmod 3 \\
\frac{n+i}{3} \text { if } i \equiv 0 \quad \bmod 3
\end{array}\right.
$$

Spoilers: https://gi.cebitec.uni-bielefeld.de/teaching/2024summer/sa3/e5spoilers/
Exercise 3 (Why 3-mers and not 2-mers?)
You may have been wondering (as I have) why the skew algorithm uses 3-mers and not 2-mers. Try to modify the algorithm, such that it uses 2 -mers instead, that is, split the suffix set into two parts based on whether $i \equiv 1 \bmod 2$ and then sort the Suffixes with $i \not \equiv 1 \bmod 2$ based on the lexicographic name of the 2 -mers, etc.
Where does this procedure fail?

[^0]
[^0]: ${ }^{1}$ If you have questions about this exercise sheet, contact Leonard Bohnenkämper

