Algorithms in Genome Research Winter 2024/2025

Exercises

Number 1, Discussion: 2024-October-25

- 1. Remember physical mapping by clone-probe hybridization.
 - (a) What are the main assumptions when the problem is modeled as the consecutive ones problem? Will it be problematic if the assumptions are not met?
 - (b) Discuss experimental reasons why the assumptions may not hold in practice.
 - (c) How severe are these limitations?
- 2. Solve the consecutive-ones problem for the following clone-probe hybridization matrix M (if possible).

		(0	1	1	0	0	0	0	0 \
М	=	0	0	0	1	1	1	0	0
		0	0	0	1	1	1	0	0
		0	1	0	0	0	1	1	0
		1	0	0	1	0	0	0	1
		0	1	1	0	1	1	1	0
		0	1	0	0	1	1	1	0
		1	0	0	1	1	0	0	1
		0	1			0		1	0
		$\setminus 1$	0	0	1	1	1	1	0/

3. Is it possible to transform the following matrix M by column re-ordering into a matrix M' that satisfies the Consecutive Ones Property?

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

If not, can you identify a property that is satisfied instead?

- 4. Use the matrix M from the previous exercise and perform the following steps, in order to find a layout with the minimum number of runs of consecutive ones:
 - (a) Create the graph G(M) and solve the Traveling Salesman Problem.
 - (b) What is the length of the shortest tour?
 - (c) What is the probe order that this tour corresponds to?
 - (d) What is the overall number of blocks of consecutive ones in this order?