Algorithms in Comparative Genomics

Bielefeld University, Summer Semester 2025 Dr. Marília D. V. Braga · Prof. Dr. Jens Stoye

https://gi.cebitec.uni-bielefeld.de/teaching/2025summer/cg

Exercise sheet 6, discussion: 06.06.2025

Exercise 1 (Study the DCJ-indel model by hand)

Consider the linear genomes $\mathbb{A} = \begin{bmatrix} 1 & X & \overline{2} & Y & 3 \end{bmatrix}$ and $\mathbb{B} = \begin{bmatrix} 1 & W & 2 & Z & 3 \end{bmatrix}$.

- 1. Draw the relational graph $AG(\mathbb{A}, \mathbb{B})$. What is the DCJ-indel distance between \mathbb{A} and \mathbb{B} ?
- 2. Find an optimal scenario with 3 indels, applying only optimal DCJs. Redraw the relational graph after the first DCJ.
- 3. Find an optimal scenario with 2 indels. Redraw the relational graph after the first DCJ. (*Hint: Find a neutral DCJ that reduces the number of runs.*)

Exercise 2 (DCJ-indel potential)

Prove the formula for the DCJ-indel potential λ of a cycle C of the adjacency graph AG(A, B),

$$\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0\\ 1 & \text{if } \Lambda(C) = 1\\ \frac{\Lambda(C)}{2} + 1 & \text{otherwise } (\Lambda(C) \text{ even}) \end{cases}$$

where $\Lambda(C)$ is the number of runs of indels in C. How does the corresponding formula for a path P with $\Lambda(P)$ runs look like?

Exercise 3 (Triangle inequality)

Consider the two genomes $\mathbb{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$ and $\mathbb{B} = \begin{bmatrix} \overline{3} & 1 & 2 & \overline{6} & 5 \end{bmatrix}$.

 Find a third genome C such that the triangle inequality for the DCJ-indel distance does not hold, i.e.

$$\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) > \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{C},\mathbb{B}).$$

2. Remember the function m_{DCJ}^{ID} from class such that the triangle inequality holds for any set of three singular genomes. Which distances do you get for the genomes \mathbb{A} , \mathbb{B} and \mathbb{C} from above?