Algorithms in Comparative Genomics

Bielefeld University, Summer Semester 2025 Dr. Marília D. V. Braga · Prof. Dr. Jens Stoye

https://gi.cebitec.uni-bielefeld.de/teaching/2025summer/cg

Exercise sheet 10, discussion: 04.07.2025

Exercise 1 (Family-free DCJ and DCJ-indel distances)

Given the following two circular genomes and gene similarities:

$$\mathbb{A} = (\mathbb{X}_1 \ \mathbb{X}_2 \ \mathbb{X}_3 \ \mathbb{X}_4 \ \mathbb{X}_5)$$

and

$$\mathbb{B} = (\mathbb{Y}_1 \ \overline{\mathbb{Y}}_2 \ \overline{\mathbb{Y}}_3 \ \overline{\mathbb{Y}}_4 \ \mathbb{Y}_5 \ \mathbb{Y}_6)$$

Genome \mathbb{A}	Genome \mathbb{B}	Similarity (σ)
X_1	Y ₁	0.8
\mathtt{X}_1	\mathtt{Y}_2	0.8
\mathtt{X}_1	\mathtt{Y}_4	0.4
\mathtt{X}_2	\mathtt{Y}_2	0.7
\mathtt{X}_2	Y_3	0.3
X_3	\mathtt{Y}_2	0.7
X_3	\mathtt{Y}_4	0.6
\mathtt{X}_4	Y_3	0.6
\mathtt{X}_4	Y_5	0.2
X_5	Y_5	0.7
X_5	Y_6	0.6

- 1. Draw the gene similarity graph of $G_{\sigma}(\mathbb{A}, \mathbb{B})$. Recall that not only the edges, but also the vertices have weights.
- 2. Find a maximal matching M_1 of $G_{\sigma}(\mathbb{A}, \mathbb{B})$ such that (i) M_1 includes the edge from X_2 to Y_2 and (ii) M_1 has the maximum possible weight. Give the weight $w(M_1)$ and the complement \widetilde{M}_1 with its corresponding weight $w(\widetilde{M}_1)$. Draw the (weighted) relational graph that can be derived from M_1 and calculate the weighted DCJ-indel distance $wd_{DCJ}^{ID}(\mathbb{A}, \mathbb{B}, M_1)$.
- 3. Find a maximal matching M_2 of $G_{\sigma}(\mathbb{A},\mathbb{B})$ such that (i) M_2 does not include the edge from X_2 to Y_2 and (ii) M_2 has the maximum possible weight. Give the weight $w(M_2)$ and the complement $\widetilde{M_2}$ with its corresponding weight $w(\widetilde{M_2})$. Draw the (weighted) relational graph that can be derived from M_2 and calculate the weighted DCJ-indel distance $\mathrm{wd}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B},M_2)$.
- 4. Draw the family-free multirelational diagram of \mathbb{A} and \mathbb{B} . Recall that every gene has an indel edge and that extremity and indel edges have weights.