
CHAPTER 3

DCJ model of canonical genomes

Let A and B be two annotated genomes and note that, if A and B form a canonical pair,
then F(A) = G(A) = G(B) = F(B). We then denote by n→ the cardinality of all these sets:
n→ = |F(A)| = |G(A)| = |G(B)| = |F(B)|. Recall that, in this case, only DCJ operations are
used for sorting one genome into the other, and the corresponding DCJ distance is denoted
by ddcj(A,B).

3.1 Relational graph of canonical genomes

Finding sorting DCJ operations and computing the DCJ distance between two canonical
genomes A and B can be achieved with the help of the relational graph of A and B [18],
denoted by GR(A,B) = (V,E), whose sets of vertices and edges are defined as follows:

1. The set of vertices is V = V (A) → V (B), where

V (A) contains a vertex for each extremity of each marker in M(A) and
V (B) contains a vertex for each extremity of each marker in M(B).

Each vertex v has an identifier corresponding to the unannotated marker extremity
it represents, and a label ω(v), corresponding to the annotated marker extremity it
represents. Note that there are 4n→ vertices in GR(A,B), 2n→ per genome.

2. The set of edges is E = Eadj(A) → Eadj(B) → Eext, where the adjacency edges are sets

Eadj(A) = {uv : u, v ↑ V (A) and uv ↑ adj(A)} and
Eadj(B) = {uv : u, v ↑ V (B) and uv ↑ adj(B)},

19

3 DCJ model of canonical genomes

and the set of extremity edges (whose cardinality is 2n→) is

Eext = {uv : u ↑ V (A) and v ↑ V (B) and ω(u) = ω(v)}.

Since any vertex in GR(A,B) has exactly one extremity edge and at most one adjacency edge,
its degree is one or two. Therefore, GR(A,B) is a collection of paths and cycles. A vertex
(marker extremity) that has no adjacency edge corresponds to a telomere and is therefore
also called telomere. Each cutpoint of each genome is represented in the graph either as an
adjacency edge or as a telomere. Recall that the number of cutpoints in A (respectively B)
is n→ + ε(A) (respectively n→ + ε(B)).

Each connected component of the graph alternates between extremity edges and cutpoints,
and we define the length of a component ! to be the number of extremity edges in !. An
i-cycle and an i-path denote respectively a cycle and a path of length i. Note that all cycles
have even length, while paths start and end with extremity edges and can have even or odd
lengths, called even and odd paths respectively.

A cycle can be simply denoted by O. An odd path has one endpoint in a telomere from A and
the other endpoint in a telomere from B and is called an AB-path, simply denoted by AB.
Even paths have either both endpoints in A, being an AA-path, simply denoted by AA, or
both endpoints in B, being a BB-path, simply denoted by BB. Even paths can also be called
unbalanced paths, while odd paths are also called balanced paths. Let the sets of cycles, AB-,
AA- and BB-paths be respectively denoted by C, PAB, PAA and PBB. Now let ”(!) give the
type of component !. For example, if ! is a cycle, then ”(!) = O. We can then explicitly
write the above mentioned sets as:

C = {! | ! ↑ GR(A,B) and ”(!) = O} ,

PAB = {! | ! ↑ GR(A,B) and ”(!) = AB} ,

PAA = {! | ! ↑ GR(A,B) and ”(!) = AA} and

PBB = {! | ! ↑ GR(A,B) and ”(!) = BB}.

Recall that ε(A) and ε(B) are the numbers of linear chromosomes in genomes A and B. The
endpoints of paths and chromosomes are the same telomeres, therefore we have ε(A)+ε(B) =
|PAB|+ |PAA|+ |PBB|. Furthermore, the numbers of telomeres in each genome are even. Since
each AA- or BB-path takes either zero or two telomeres per genome and each AB-path takes
one telomere per genome, the number of AB-paths must be even.

Related graphs. As illustrated in Figure 3.1, the relational graph has the same properties
of two simpler graphs that were proposed earlier:

1. The first is the so-called breakpoint graph, originally proposed in the seminal studies of
the inversion sorting and distance [7]. It can be derived from the relational graph by
contracting each extremity edge e of GR(A,B) = (V,E) and assigning to the resulting
single vertex the common annotation of the vertices that are connected by e. In the
breakpoint graph there are only adjacency edges. Furthermore, cycles also have even
length, while AB-paths are even and AA- and BB-paths are odd.

20

3.1 Relational graph of canonical genomes

Breakpoint Graph 1t 1h 2t 2h 3t 3h 4t 4h 5t 5h

Relational Graph

1t 1h 5t 5h 3t 3h 2h 2t 4h 4t

1t 1h 2t 2h 3t 3h 4t 4h 5t 5h

Adjacency Graph

1t 1h5t 5h3t 3h 2h 2t4h 4t

1t 1h2t 2h3t 3h4t 4h5t 5h

Figure 3.1: For a canonical pair formed by multilinear genome A = { [1 5 3] , [2 4] } and
unilinear genome B = { [1 2 3 4 5] }, where n→ = 5, we represent the relational graph
(in the middle) surrounded by the breakpoint graph (top) and by the adjacency graph
(bottom). Note that the number of vertices in the breakpoint graph and the numbers of
edges in both relational and adjacency graphs are equal to 2n→. In all graphs we have a
(blue) 4-cycle, a (red) AA-path and two AB-paths.

2. The second is the so-called adjacency graph, which is bipartite and was originally
proposed in the formalization of the DCJ sorting and distance [10]. It can be derived
from the relational graph by contracting each adjacency edge a of GR(A,B) = (V,E),
concatenating in the label of the resulting single vertex the annotations of the vertices
that are connected by a. In other words, the vertices of the adjacency graph are the
adjacencies and telomeres of A and B and all edges are extremity edges. Similarly to
the relational graph, in the adjacency graph cycles have even length, AB-paths are odd
and AA- and BB-paths are even.

Relational graph of sorted and unsorted genomes. The smallest components that can
occur in GR(A,B) are 2-cycles and (AB) 1-paths, denoted short components. A cycle whose
length is greater than 2 or a path whose length is greater than 1 is called a long component.
When canonical genomes A and B are identical (or sorted), their relational graph is a collec-
tion of short components: identical genomes have the same sets of adjacencies and telomeres,

21

3 DCJ model of canonical genomes

and each common adjacency corresponds to a 2-cycle while each common telomere corre-
sponds to a 1-path in GR(A,B). Recall that the length of a component corresponds to its
number of extremity edges and that GR(A,B) has 2n→ extremity edges. Therefore, for sorted

genomes we have 2n→ = 2|C| + |PAB| and, consequently, n→ = |C| + |PAB|
2

. Otherwise, when
canonical genomes A and B are distinct (or unsorted), their relational graph contains at least

one long component. Therefore, in this case n→ > |C| + |PAB|
2

. With these observations we
can already see that the DCJ operations that transform A into B must increase the numbers
of cycles and/or of AB-paths in GR(A,B). In the following we will present the results from
Bergeron et al. [10], explaining how this can be achieved.

3.2 Types of DCJ operation with respect to the relational graph

Note that, with respect to its e#ect on the relational graph, a DCJ ϑ cuts one or two
components, and rejoins the open ends to transform them into one or two new components.
A DCJ operation ϑ is said to be internal (int) to a single component !, when ϑ cuts
only at cutpoint(s) that are in !. The result of an internal DCJ ϑ can be one component
(distinct from !) or two components. In contrast, A DCJ operation ϑ is said to be a
recombination (rec) when ϑ cuts at cutpoints of two distinct components ! and !↑. The
result of a recombination ϑ can be either a single component or two components (distinct
from ! and !↑).

In order to describe all possible DCJ operations, we adopt the following notation to represent
the types of components and their lengths:

• O
↓ı↔: even cycle with length ı ↑ {2, 4, 6, . . .};

• AB
↓ı↔: balanced path with length ı ↑ {1, 3, 5, . . .};

• AA
↓ı↔: unbalanced AA-path with length ı ↑ {2, 4, . . .};

• BB
↓ı↔: unbalanced BB-path with length ı ↑ {2, 4, . . .};

• !↓ı↔: component of any type with length ı ↓ 1.

The possible types of DCJ operation applied on cutpoints of genome A are described in
Table 3.1 [10]. Note that each DCJ operation must be of one of three types:

Gaining DCJ. Either increases |C| by one or increases |PAB| by two.

Neutral DCJ. Does not change the cardinalities of the sets C and PAB.

Losing DCJ. Either decreases |C| by one or decreases |PAB| by two.

22

3.2 Types of DCJ operation with respect to the relational graph

Table 3.1: E#ects of DCJ operations (applied on cutpoints of A) on the relational graph

component(s) DCJ component(s) a!ects...

[state] [state]

1. !
→ı+ω↑ gaining (int)↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗

losing (rec)

O
→ı↑

!
→ω↑ with

ı ↘ {2, 4, 6, . . .}
ϑ ≃ 1

”(!
→ı+ω↑

) = ”(!
→ω↑

)

#|C| by ±1

[r○4 / r○3
] [r○4 / r○3

]

2. !
→ı+ω↑ neutral (int)↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗

neutral (int)
!̌
→ı+ω↑

with

ı ↘ {2, 4, 6, . . .}
ϑ ≃ 1

!
→ı+ω↑

) ⇐= !̌
→ı+ω↑

”(!
→ı+ω↑

) = ”(!̌
→ı+ω↑

)[r○4 / r○3
] [r○4 / r○3

]

3.
AA

→ı+ω↑

BB
→ı→+ω→↑

gaining (int)↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗
losing (rec)

AB
→ı+ı→↑

AB
→ω+ω→↑ with

ı ↘ {0, 2, 4, . . .}
ϑ ↘ {2, 4, 6, . . .}
ı↓, ϑ↓ ↘ {1, 3, 5, . . .}

#|PAB| by ±2

[r○4 / r○3
] [r○4 / r○3

]

4. AB
→ı+ω→↑

AB
→ω+ı→↑

neutral (rec)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗
neutral (rec)

AB
→ı+ı→↑

AB
→ω+ω→↑ with

all AB-paths distinct

ı ↘ {0, 2, 4, . . .}
ϑ ↘ {2, 4, 6, . . .}
ı↓, ϑ↓ ↘ {1, 3, 5, . . .}[r○4 / r○3

] [r○4 / r○3
]

5.
AA

→ı+ω↑

AB
→ı→+ω→↑

neutral (rec)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗
neutral (rec)

AA
→ı+ı→↑

AB
→ω+ω→↑ with

all paths distinct

ı, ı↓ ↘ {2, 4, 6, . . .}
ϑ ↘ {0, 2, 4, . . .}
ϑ↓ ↘ {1, 3, 5, . . .}[r○4 / r○3

] [r○4 / r○3
]

6.
BB

→ı+ω↑

AB
→ı→+ω→↑

neutral (rec)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗
neutral (rec)

BB
→ı+ω→↑

AB
→ı→+ω↑ with

all paths distinct

ı, ϑ, ϑ↓ ↘ {1, 3, 5, . . .}
ı↓ ↘ {0, 2, 4, . . .}

[r○4 / r○3
] [r○4 / r○3

]

7. AA
→ı+ω→↑

AA
→ω+ı→↑

neutral (rec)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗
neutral (rec)

AA
→ı+ı→↑

AA
→ω+ω→↑ with

all AA-paths distinct

ı ↘ {0, 2, 4, . . .}
ϑ, ı↓, ϑ↓ ↘ {2, 4, 6, . . .}

[r○4 / r○3
] [r○4 / r○3

]

8. BB
→ı+ω→↑

BB
→ω+ı→↑

neutral (rec)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗
neutral (rec)

BB
→ı+ı→↑

BB
→ω+ω→↑ with

{
all BB-paths distinct

ı, ϑ, ı↓, ϑ↓ ↘ {1, 3, 5, . . .}
[r○4

] [r○4
]

9. AA
→ı↑ gaining (int)↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗

losing (int)
O

→ı↑
with ı ↘ {2, 4, 6, . . .} #|C| by ±1

[r○2|2
] [r○2|1

]

10. BB
→ı+ω↑ gaining (rec)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗

losing (rec)

AB
→ı↑

AB
→ω↑ with ı, ϑ ↘ {1, 3, 5, . . .} #|PAB| by ±2

[r○2|1
] [r○2|2

]

11. AA
→ı+ω↑ neutral (int)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗

neutral (rec)

AA
→ı↑

AA
→ω↑ with ı, ϑ ↘ {2, 4, 6, . . .}

[r○2|1
] [r○2|2

]

12. AB
→ı+ω↑ neutral (int)↗↗↗↗↗↗↗↗↗ωε↗↗↗↗↗↗↗↗↗

neutral (rec)

AA
→ı↑

AB
→ω↑ with

{
ı ↘ {2, 4, 6 . . .}
ϑ ↘ {1, 3, 5, . . .}

[r○2|1
] [r○2|2

]

23

3 DCJ model of canonical genomes

3.3 DCJ distance formula

Gaining DCJ operations lead to a “sorted” graph. In a sorting procedure it is always possible
to find a gaining DCJ at each step, therefore any optimal operation is gaining [10]. This can
be verified simply by looking at Table 3.1: it is obvious that an unsorted graph will have at
least one of the situations leading to the gaining operations shown in lines 1, 3, 9 and 10.

Since gaining operations are those that produce the maximum possible increase of cycles or
AB-paths, the following theorem holds.

Theorem 1 ([10]) Given a canonical pair of genomes A and B, their DCJ distance is

ddcj(A,B) = n→ ↔
(
|C|+ |PAB|

2

)
.

3.4 Triangular inequality

Given any three canonical genomes A, B and C, consider without loss of generality that
ddcj(A,B) ↓ ddcj(A,C) and ddcj(A,B) ↓ ddcj(B,C). Then the triangular inequality is the
property that guarantees that ddcj(A,B) ↗ ddcj(A,C) + ddcj(B,C). It obviously holds for
the DCJ distance: by combining a sorting scenario from A to C with ddcj(A,C) steps and a
sorting scenario from C to B with ddcj(B,C) steps we trivially get a sorting scenario from A to
B with ddcj(A,C)+ddcj(B,C) steps. Therefore, it is clear that ddcj(A,B) cannot be greater
than ddcj(A,C) + ddcj(B,C), otherwise it would contradict the fact that it corresponds to
the length of a most parsimonious sorting scenario.

3.5 On DCJ sorting

Proposition 1 For any DCJ-state of type r○4 or r○3 or r○2|2 whose cutpoints are in
genome A and belong to the same long component ! of GR(A,B), there is one, and only one
(internal) gaining DCJ operation.

Proof: For each pair of A-cutpoints, such that at most one is a telomere, we know that there
are two di#erent DCJ operations. When the cutpoints belong to the same component !,
one of the two operations simply inverts a fragment, not changing the structure of !, and is
therefore neutral (Table 3.1, line 2.). The second operation is a gaining DCJ that splits !
into a cycle and a smaller component of the same type as !, increasing the number of cycles
(Table 3.1, line 1.). This includes all pairs of A-cutpoints in cycles, AB-paths and BB-paths,
and all pairs of A-cutpoints in AA-paths excluding the case where the two cutpoints are
telomeres. For the particular case where the two cutpoints are telomeres of an AA-path
forming a DCJ-state of type r○2|2, there is only one (internal) DCJ operation, and this
operation is gaining (Table 3.1, line 9). !

Proposition 1 guarantees that there is a gaining DCJ operation for each DCJ-state of type
r○4 or r○3 or r○2|2 internal to any long component of GR(A,B). In particular, this DCJ-state
can be a pair of cutpoints directly connected to an adjacency ϖ in genome B. If the result

24

3.6 Complexity of DCJ distance and greedy sorting

of this particular cut is to join such that the adjacency ϖ is created in A, a new 2-cycle
appears in the relational graph, meaning that a DCJ operation that creates an adjacency of
genome B in genome A is gaining.

Corollary 1 Let ϖ be an adjacency of B that is not present in A. The DCJ operation that
reconstructs ϖ in A is gaining.

Once all adjacencies of B are reconstructed in A, the only long components that can exist
in the relational graph are BB-paths of length 2. Any BB-path of length 2 can be split into
two AB-paths with a gaining DCJ (Table 3.1 line 10):

Corollary 2 For any DCJ-state of type r○2|1 whose cutpoint is an A-adjacency of a BB-path
there is only one (internal) DCJ operation, and this operation is gaining.

The results above give a simple greedy algorithm to find one optimal sequence of DCJ
operations (exclusively composed of gaining DCJs) to sort A into B consisting of simply
reconstructing each adjacency of B that is not in A, followed by reconstructing each telomere
of B that is not in A [10].

3.6 Complexity of DCJ distance and greedy sorting

The cutpoints of genome A with n→ markers can be obtained by reading the chromosomes
of A once and storing the cutpoints in a vector of length n→ + ε(A). Simultaneously, we
can store in another vector of length 2n→ a pointer to the cutpoint to which each marker
extremity belongs. The cutpoints and pointers of genome B can be obtained similarly. Since
ε(A) ↗ n→ and ε(B) ↗ n→, this procedure takes O(n→) time and space.

These four vectors are an implict representation of the relational graph: by navigating on
them we can easily obtain the cycles and paths of the graph, still in O(n→).

Finally, for greedily sorting we only need to visit the adjacencies of genome B followed by
the telomeres of genome B and reconstruct one by one in genome A. Since each of these
reconstructions requires constant time access to the vetcors of A, the greedy sorting can be
easily done in O(n→) time and space [10].

3.7 Capping the canonical relational graph optimally

The paths of the relational graph can be converted into cycles with a technique called
capping [55]. It consists of modifying the graph by adding artificial extremities, called cap
extremities, that link all paths into cycles. Each telomere must be connected to a distinct cap
extremity by an additional semi-artificial adjacency edge. Furthermore, two cap extremities
that are in the same genome and not connected to telomeres can be connected to each other
by an artificial adjacency edge. Then, each cap extremity in genome A must be connected
to a distinct cap extremity in genome B by a cap extremity edge. Therefore, the capping
always connect a telomere in genome A to a telomere in genome B via two cap extremities.

25

3 DCJ model of canonical genomes

Since the number of telomeres in each genome is even, the number of cap extremities is also
even. Each pair of cap extremities compose an “artificial” marker called cap.

There many ways of performing a capping. A procedure for obtaining an optimal capping,
that preserves the DCJ distance, is given in the following.

Optimal capping of AB-paths. For each AB-path whose telomeres are ϱA and ϱB, add cap
extremity vertices ↘

A
and ↘

B
and connect with (semi-artificial) adjacency edges ↘

A
to ϱA and

↘
B
to ϱB. Furthermore, connect with a (cap) extremity edge the vertices ↘

A
to ↘

B
. Note that

this removes one AB-path, adds one cycle, but also adds half a cap to the set of markers.
Since the number of AB-paths is even, each pair of capped AB-paths removes two AB-paths,
adds two cycles, but also adds one cap to the set of markers. We denote the capping of path
AB by ς(AB).

Optimal capping of AA- and BB-paths. Let an AA-path have telomeres ϱ
1

A
and ϱ

2

A
and

a BB-path have telomeres ϱ
1

B
and ϱ

2

B
. These paths can be optimally linked together into a

single cycle as follows. Add cap extremity vertices ↘1
A
, ↘2

A
, ↘1

B
and ↘2

B
and connect with (semi-

artificial) adjacency edges ↘1
A
to ϱ

1

A
, ↘2

A
to ϱ

2

A
, ↘1

B
to ϱ

1

B
, and ↘2

B
to ϱ

2

B
. Furthermore, connect

with (cap) extremity edges ↘1
A
to ↘1

B
and ↘2

A
to ↘2

B
. Note that this adds one cycle, but also

adds one cap to the set of markers. We denote the capping of paths AA and BB together by
ς(AA,BB). Alternatively, each AA- or BB-path can also be separately capped into a cycle,
and this alternative is also optimal. Again, let an AA-path have telomeres ϱ1

A
and ϱ

2

A
. Add

cap extremity vertices ↘1
A
, ↘2

A
, ↘2

A
and ↘2

B
and connect with (semi-artificial) adjacency edges

↘1
A
to ϱ

1

A
and ↘2

A
to ϱ

2

A
. Furthermore, connect with an (artificial) adjacency edge the two cap

vertices ↘1
B
and ↘2

B
and with cap extremity edges ↘1

A
to ↘1

B
and ↘2

A
to ↘2

B
. Note that this adds

one cycle, but also adds one cap to the set of markers. Capping a BB-path separately can
be done analogously. We denote the cappings of path AA (respectively BB) by ς(AA, ϖ̊B)
(respectively by ς(BB, ϖ̊A)).

Table 3.2 summarizes the e#ect of capping the paths of the graph as described above. Each
line of the table has neutral e#ect on the distance, being therefore optimal. Moreover, it is
easy to see that it is not possible to obtain a “better” capping, with more cycles and/or less
caps, that would even decrease the distance. An example of a graph with optimally capped
paths is given in Figure 3.2.

Table 3.2: Linking paths from GR(A,B) of canonical genomes. The symbol ϖ̊A represents an
artificial adjacency in A and the symbol ϖ̊B represents an artificial adjacency in B. Observe
that $ddcj = $n→ ↔ ($(|C|) +$(2|PAB|)).

paths linking cycle ”n→ ”(|C|) ”(2|PAB|) ”ddcj

1. AB
→ı↑

O
→ı+1↑

= ϖ(AB→ı↑
) +0.5 +1 ↗0.5 0

2. AA
→ı↑

+ BB
→ω↑

O
→ı+ω+2↑

= ϖ(AA→ı↑,BB→ω↑
) +1 +1 0 0

3. AA
→ı↑

O
→ı+2↑

= ϖ(AA→ı↑, ϱ̊B) +1 +1 0 0

4. BB
→ω↑

O
→ω+2↑

= ϖ(BB→ω↑, ϱ̊A) +1 +1 0 0

26

3.7 Capping the canonical relational graph optimally

Recall that ε(A)+ε(B) = |PAB|+|PAA|+|PBB|. Now let a→ = |ε(A)↔ε(B)| = | |PAA|↔ |PBB| |,
p→ = max{ε(A),ε(B)} = |PAB|

2
+max{|PAA|, |PBB|} and u = min{|PAA|, |PBB|}. An optimal

capping of all paths with the minimum number of caps maximizes the use of line (2.) of
Table 3.2 and has p→ caps and a→ artificial adjacencies, while an optimal capping with the
maximum number of caps uses only lines (1.) , (3.) and (4.) of Table 3.2 and has p→ + u

caps and a→ + 2u artificial adjacencies.

1t 1h5t 5h3t 3h4t 4h2t 2h

1t 1h2t 2h3t 3h 4t 4h5t 5h

→

1t 1h5t 5h3t 3h4t 4h2t 2h ϖ̊A

1t 1h2t 2h3t 3h 4t 4h5t 5h

Figure 3.2: Optimal capping of the paths of a relational graph. Cap vertices are drawn in
gray.

27

