
CHAPTER 2

Basic Definitions

A DNA molecule is a chain of anti-parallel complementary base pairs (bp), in which a base
of type “A” is always paired with a base of type “T” and a base of type “C” is always paired
with a base of type “G” (Figure 2.1).

→↑

↑↓
Two complementary anti-parallel strands, linear or circular

Reverse complement:

AGCTG ↔ CAGCT

Figure 2.1: A DNA molecule is a chain of oriented base pairs (bp), which can potentially be
broken at any position (between two consecutive base pairs)

Each DNA molecule that we consider is a chromosome, and a genome is a collection of
chromosomes. But in our studies of large-scale genome rearrangements a high-level view of
chromosomes and genomes is adopted.
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2 Basic Definitions

2.1 Representing Markers, Chromosomes, Genomes

In this high-level view, in each chromosome only particular fragments are considered. Each
of these fragments lies on one of the two complementary anti-parallel DNA strands of a
chromosome and is called a marker. Usually, a marker corresponds to a gene, which is a
DNA fragment coding for a protein. In our model, chromosomes can only be broken and
subsequently repaired between markers or at the chromosome ends, that is, a marker can
never be split into pieces. Therefore, the length of a marker is not particularly relevant here.

Each marker can be referred to by a unique identifier. Since a marker is oriented, we need
to distinguish its two possible representations, for example by representing it with an arrow
labeled with its unique identifier. Another way is to adopt the following textual notation: a
marker X is represented by the symbol X itself, if it is read in direct orientation, or by the
symbol X (the reverse complement of X), if it is read in reverse orientation. Yet another way
of representing the orientation of a marker X is by distinguishing its two extremities: head,
denoted by Xh, and tail, denoted by Xt. Let the set of markers in a genome A be denoted

by M(A). Similarly, the set of extremities of markers in M(A) is ext(A) =
⋃

Xi→M(A)

{Xhi , Xti }.

(i) or

↗ A chromosome is represented by the sequence of its markers ↗

(ii)
X1 X2 X3 X4

(iii) [ X1 X2 X3 X4 ]

or

or

X4 X3 X2 X4

[ X4 X3 X2 X1 ]

Figure 2.2: (i) Linear chromosome as a sequence of markers represented with (ii) labeled arrows
or (iii) oriented symbols.

Each chromosome is then represented by a sequence of oriented markers. In our notation, all
markers of a chromosome K are concatenated in a string s that is flanked by square brackets
if K is linear, or by parentheses if K is circular. Let s be the reverse complement of s,
that is the string obtained by reverting the order and the orientation of the markers in s.
Note that K can be equally represented by s or by s and, if K is circular, by any circular
rotation of each of these two sequences. As an example, let K be a linear chromosome
whose sequence of markers can be equally represented by [X1X2X3X4 ] or by [X4X3X2X1 ], as
illustrated in Figure 2.2.

The neighborhood between extremities of two consecutive markers in a chromosome is called
an adjacency. An adjacency is represented by the unordered pair of adjacent extremities.
For example, an adjacency between Xh

1
and Xh

2
can be represented as {Xh

1
, Xh

2
}, or simply

abbreviated as Xh
1
Xh
2
(↘ Xh

2
Xh
1
). Therefore, Xh

1
Xh
2
, Xt

2
Xt
3
, Xh

3
Xh
4
are the adjacencies of chromo-

some K above. A linear chromosome such as K also has two telomeres, which are the marker
extremities at the chromosome ends, that do not form adjacencies with other markers. In
our example the telomeres are Xt

1
and Xt

4
.
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2.2 Genome rearrangements or mutations

A genome A is then defined by its set C(A) of chromosomes. We denote respectively by ω(A)
and ε(A) the numbers of linear and of circular chromosomes in genome A. A genome A is
said to be unichromosomal when it consists of a single chromosome or multichromosomal
otherwise. Moreover, A is said to be circular when all its chromosomes are circular, linear
when all its chromosomes are linear, or mixed otherwise. We also adopt the shorter notations
unilinear for unichromosomal linear, unicircular for unichromosomal circular, multilinear for
multichromosomal linear and multicircular for multichromosomal circular. Denote, respec-
tively, by adj(A) and tel(A) the sets of adjacencies and telomeres in the chromosomes of
genome A.

For example, let a multilinear genome A be composed of chromosomes [X1X2X3X4 ] and
[X5X6X7 ]. A possible representation of A is then C(A) = { [X1X2X3X4 ], [X5X6X7 ]}. Note
that M(A) = {X1, X2, X3, X4, X5, X6, X7} and ext(A) = {Xh

1
, Xt

1
, Xh

2
, Xt

2
, . . . , Xh

7
, Xt

7
}. Furthermore,

adj(A) = {Xh
1
Xh
2
, Xt

2
Xt
3
, Xh

3
Xh
4
, Xh

5
Xh
6
, Xt

6
Xh
7
} and tel(A) = {Xt

1
, Xt

4
, Xt

5
, Xt

7
}.

2.2 Genome rearrangements or mutations

Recall that, in our model, chromosomes cannot be broken within a marker. This means that
they can only be broken at adjacencies (between two marker extremities) or at telomeres
(next to a marker extremity that is at the end of a linear chromosome). In other words,
a cut performed on a chromosome K of a genome A separates two adjacent markers of K,
or “opens” one of its telomeres, if K is linear. Each adjacency or telomere of a genome
is therefore called a cutpoint. Let the set of cutpoints of genome A be denoted by ϑ(A):
ϑ(A) = adj(A) ≃ tel(A), with cardinality |ϑ(A)| = |adj(A)|+ |tel(A)| = |M(A)|+ ω(A).

By breaking chromosomes within cutpoints and subsequently repairing the corresponding
open ends, in our studies a genome can be transformed with two types of rearrangements.

The first type are structural rearrangements, which change the order, orientations of genes
and numbers of chromosomes. These include, for example, fusions and fissions of chro-
mosomes, translocations, reciprocal translocations and intra-chromosomal inversions. The
second type are content-modifying rearrangements, which can replace, delete or include seg-
ments of genes.

In any case, a rearrangement ϖ = ( s○
a
↓ s○

b
) transforms one starting state s○

a
into another

resulting state s○
b
. In the models considered in this text, any rearrangement is reversible.

The reverse of ϖ is denoted by ϖ
↑1 = ( s○

b
↓ s○

a
). Note that (ϖ↑1)

↑1
= ϖ.

In the following we describe how exactly structural and content-modifying rearrangements
are modeled.

2.2.1 Structural rearrangements: double-cut-and-join (DCJ) operations

A double-cut and join or DCJ applied on genome A is the operation that performs cuts in
one or two di!erent cutpoints of A. In the case of a single cut, the corresponding cutpoint
must be an adjacency. In the case of two cuts, the corresponding cutpoints can be in distinct
chromosomes or in the same chromosome of A. In any case, a DCJ creates two to four open
ends, and joins these open ends in a di!erent way [99].
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2 Basic Definitions

For example, let C(A) = { [X1X2X3X4 ], [X5X6X7 ]}, and consider a DCJ that cuts between
extremities Xt

2
and Xt

3
of its first chromosome and between extremities Xt

6
and Xh

7
of its

second chromosome, creating segments X1X2•, •X3X4, X5X6• and •X7 (where the symbols •
represent the open ends). If we join the first with the fourth and the second with the third
open end, we get C(A↓) = { [X1X2X7 ], [X5X6X3X4 ]}, that is, the described DCJ operation is
a reciprocal translocation transforming A into A

↓.

Indeed, a DCJ operation can correspond not only to a translocation but to several structural
rearrangements, such as an inversion, a fusion, a fission, a chromosome circularization or
linearization, a circular excision or integration, as we will describe below.

Let ϱi denote a marker extremity. In general, the cutpoints a!ected by a DCJ operation
compose a (rearrangement) DCJ-state that can be of three types:

• r○4: involves 4 marker extremities forming two adjacencies, e. g. ϱ1ϱ2 and ϱ3ϱ4;

• r○3: involves 3 marker extremities forming one adjacency and one telomere, e. g. ϱ1ϱ2
and ϱ3;

• r○2|1: involves 2 marker extremities forming one adjacency, e. g. ϱ1ϱ2;

• r○2|2: involves 2 marker extremities forming two telomeres, e. g. ϱ1 and ϱ2.

A DCJ operation can only transform a state of one type into another state of the same
type, with one exception: if the starting state is of type r○2|1, then the resulting state is of
type r○2|2 and vice-versa.

The possible DCJ operations are described in detail as follows:

DCJ operation of type 1: involves states of type r○4, whose two cutpoints are adjacencies.
The possible DCJ operations in this class can be represented as a circular chain of three
states, so that each state can be transformed into each of the other two via a DCJ operation
(see Figure 2.3).

r○4

a
= {ϱ1ϱ2, ϱ3ϱ4}

⇐⇒ ⇑⇓
r○4

b
= {ϱ1ϱ3, ϱ2ϱ4} →↓ r○4

c
= {ϱ1ϱ4, ϱ2ϱ3}

Figure 2.3: A DCJ operation of type 1 involves two adjacencies, with two possibilities of
rejoining the open extremities in a di!erent way

Note that any of the operations described above can be represented as ϖ = ( r○4

x
↓ r○4

y
),

whose reverse is ϖ↑1 = ( r○4

y
↓ r○4

x
).

1.1: If in r○4

a
, the adjacencies ϱ1ϱ2 and ϱ3ϱ4 are in distinct linear chromosomes, then in the

other two states ( r○4

b
and r○4

c
) each adjacency is also in a distinct linear chromosome,

therefore all six possible DCJ operations represented in this subcase are reciprocal
translocations. This is the situation of the example given in the beginning of this
section.
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2.2 Genome rearrangements or mutations

1.2: If in r○4

a
, the adjacencies ϱ1ϱ2 and ϱ3ϱ4 are in distinct chromosomes, at least one of the

two being circular, then in the other two states ( r○4

b
and r○4

c
) both adjacencies are in

the same chromosome. In this subcase, both ϖ1 = ( r○4

a
↓ r○4

b
) and ϖ2 = ( r○4

a
↓ r○4

c
)

are circular integrations, both ϖ
↑1

1
= ( r○4

b
↓ r○4

a
) and ϖ2↑1 = ( r○4

c
↓ r○4

a
) are

circular excisions and both ϖ3 = ( r○4

b
↓ r○4

c
) and ϖ

↑1

3
= ( r○4

c
↓ r○4

b
) are inversions.

DCJ operation of type 2: involves states of type r○3, where one cutpoint is an adjacency
and the other is a telomere. The possible DCJ operations in this class can be represented as
a circular chain of three states, so that each state can be transformed into each of the other
two via a DCJ operation(see Figure 2.4).

r○3

a
= {ϱ1ϱ2, ϱ3}

⇐⇒ ⇑⇓
r○3

b
= {ϱ1ϱ3, ϱ2} →↓ r○3

c
= {ϱ1, ϱ2ϱ3}

Figure 2.4: A DCJ operation of type 2 involves two adjacencies and one telomere, with two
possibilities of rejoining the open extremities in a di!erent way

Note that any of the operations described above can be represented as ϖ = ( r○3

x
↓ r○3

y
),

whose reverse is ϖ is ϖ↑1 = ( r○3

y
↓ r○3

x
).

2.1: If in r○3

a
, the adjacency ϱ1ϱ2 and the telomere ϱ3 are in distinct linear chromosomes,

then in the other two states ( r○3

b
and r○3

c
) the adjacency and the telomere are also in

distinct linear chromosomes, therefore all six possible DCJ operations represented in
this subcase are translocations.

2.2: In r○3

a
the extremity ϱ3 is a telomere, obviously in a linear chromosome. If the ad-

jacency ϱ1ϱ2 is in a circular chormosome, then in the other two states ( r○3

b
and r○3

c
)

the adjacency and the telomere are in the same linear chromosome. In this sub-
case, both ϖ1 = ( r○3

a
↓ r○3

b
) and ϖ2 = ( r○3

a
↓ r○3

c
) are circular integrations,

both ϖ
↑1

1
= ( r○3

b
↓ r○3

a
) and ϖ

↑1

2
= ( r○3

c
) ↓ r○3

a
) are circular excisions and both

ϖ3 = ( r○3

b
↓ r○3

c
) and ϖ

↑1

3
= ( r○3

c
↓ r○3

b
) are inversions.

DCJ operation of type 3: involves states of types r○2|2 and r○2|1. Let one telomere be ϱ1

and the other be ϱ2. Then the possible DCJ operations in this class can be represented as a
circular chain of two states, so that each state can be transformed into the other via a DCJ
operation (see Figure 2.5).

r○2|2 = {ϱ1, ϱ2}"#

r○2|1 = {ϱ1ϱ2}

Figure 2.5: A DCJ operation of type 3 involves one adjacency or two telomeres, with a single
possibility of rejoining the open extremities in a di!erent way
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2 Basic Definitions

Note that one of the operations described above can be represented as ϖ = ( r○2|2 ↓ r○2|1)
and its reverse is ϖ↑1 = ( r○2|1 ↓ r○2|2).

3.1: If in r○2|2, the telomeres ϱ1 and ϱ2 are in distinct linear chromosomes, then in r○2|1

they form an adjacency in a linear chromosome. In this subcase, ϖ = ( r○2|2 ↓ r○2|1)
is a linear fusion while ϖ

↑1 = ( r○2|1 ↓ r○2|2) is a linear fission.

3.2: If in r○2|2, the telomeres ϱ1 and ϱ2 are in the same linear chromosome, then in r○2|1

they form an adjacency in a circular chromosome. In this subcase, ϖ = ( r○2|2 ↓ r○2|1)
is a circularization while ϖ

↑1 = ( r○2|1 ↓ r○2|2) is a linearization.

2.2.2 Content-modifying rearrangements: substitutions and indel operations

The content of a chromosome can be modified with substitutions of blocks of contiguous
markers. Special cases of substitutions are insertions and deletions of blocks of contiguous
markers, collectively called indel operations. As an example, consider the simple deletion
of block X6X3 from linear chromosome [X5X6X3X4 ], resulting in the shorter linear chromo-
some [X5X4 ].

A substitution a!ects a single chromosome, therefore at most one chromosome can be entirely
substituted, deleted or inserted at once. In general, the cutpoints of a substitution compose
a (content) substitution-state that includes a block of contiguous markers w and can be of
four types:

• c○2: the block w is flanked by 2 marker extremities, e. g. ϱ1wϱ2 ;

• c○1: the block w is at the end of a linear chromosome, flanked by a marker extremity
at one side, e. g. ϱ1w;

• c○L: the block w is a whole linear chromosome;

• c○C: the block w is a whole circular chromosome.

A substitution transforms one starting state into another resulting state and both states
must be flanked by exactly the same marker extremities. Furthermore, we do not allow the
substitution of a linear by a circular chromosome and vice-versa. Therefore a substitution
operation can only transform a state of one type into another state of the same type. The
possible substitutions are described in detail as follows, assuming that w ⇔= ς, while w

↓ can
be equal to ς.

Substitution of type 1: a!ects an inner segment of a chromosome. The possible operations
in this class can be represented as a circular chain of two states, so that each state can be
transformed into the other via a substitution (see Figure 2.6).

c○2

a
= ϱ1wϱ2

del if w→
=ω↑↑↑↑↑↑↑φ↼↑↑↑↑↑↑↑

ins if w→
=ω

c○2

b
= ϱ1w

↓
ϱ2

Figure 2.6: A substitution of type 1 a!ects an inner segment of a chromosome.

Substitution of type 2: a!ects a segment at one end of a linear chromosome. The possible
operations in this class can be represented as a circular chain of two states, so that each
state can be transformed into the other via a substitution (see Figure 2.7).
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2.3 Family-annotated genomes

c○1

a
= ϱ1w

del if w→
=ω↑↑↑↑↑↑↑φ↼↑↑↑↑↑↑↑

ins if w→
=ω

c○1

b
= ϱ1w

↓

Figure 2.7: A substitution of type 2 a!ects a segment at one end of a linear chromosome.

Substitution of type 3: a!ects a whole linear chromosome. The possible operations in
this class can be represented as a circular chain of two states, so that each state can be
transformed into the other via a substitution (see Figure 2.8).

c○L

a
= [w]

del if w→
=ω↑↑↑↑↑↑↑φ↼↑↑↑↑↑↑↑

ins if w→
=ω

c○L

b
= [w↓]

Figure 2.8: A substitution of type 3 a!ects a whole linear chromosome.

Substitution of type 4: a!ects a whole circular chromosome. The possible operations in
this class can be represented as a circular chain of two states, so that each state can be
transformed into the other via a substitution (see Figure 2.9).

c○C

a
= (w)

del if w→
=ω↑↑↑↑↑↑↑φ↼↑↑↑↑↑↑↑

ins if w→
=ω

c○C

b
= (w↓)

Figure 2.9: A substitution of type 4 a!ects a whole circular chromosome.

Any of the operations described above can be represented as ϖ = ( c○ε
x
↓ c○ε

y
), whose reverse

is ϖ↑1 = ( c○ε
y
↓ c○ε

x
), where ↽ denotes one of the four described types.

In the special cases of indels, we have the particular situations as follows: the inner block
must be non-empty in the start state of a deletion and in the final state of an insertion,
while it must be empty in the start state of an insertion and in the final state of a deletion.
Therefore, if ϖ is an insertion, then ϖ

↑1 is a deletion and vice versa.

In Figure 2.10 we show an example of (i) a sorting scenario and (ii) its reverse; both with
two DCJs and one content-modifying operation.

2.3 Family-annotated genomes

The markers of a genome can be grouped into families. Each marker must belong to a single
family and the markers in the same family are considered to be equivalent.

For example, consider the linear genome C(A) = { [X1X2X3X4 ], [X5X6X7 ]}, whose first chro-
mosome is represented in Figure 2.11, and suppose that marker X1 belongs to family 1,
markers X2, X4 and X5 belong to family 2, markers X3 and X6 belong to family 3 and marker
X7 belongs to family 4. The set of families that occur in A, denoted by F(A) is then
F(A) = {1, 2, 3, 4}.

Let ⇀(X) be a function that gives the family-annotation of a marker X. The chromosome
representation of A according to ⇀ is then denoted by ⇀(C(A)), which in our example is
⇀(C(A)) = { [1232 ], [234 ]}. We can now define the multiset of family-annotated mark-
ers G(A) = ⇀(M(A)) and the multiset of family-annotated marker extremities EXT(A) =

13



2 Basic Definitions

(i) (ii)

X1 X2 X3 X4 X5 X6

ϖ1= translocation

X1 X2 X4 X3 X5 X6

ϖ2= fusion

X1 X2 X4 X3 X5 X6

ϖ3= deletion

X1 X3 X5 X6 X1 X2 X3 X4 X5 X6

ϖ
→1
1 = translocation

X1 X2 X4 X3 X5 X6

ϖ
→1
2 = fission

X1 X2 X4 X3 X5 X6

ϖ
→1
3 = insertion

X1 X3 X5 X6

Figure 2.10: (i) A sequence s = ϖ1ϖ2ϖ3 whose three subsequent steps are
ϖ1 = ({X2tX3h, X5t} ↓ {X5tX3h, X2t}), ϖ2 = ({X2t, X4h} ↓ {X2tX4h}) and ϖ3 =
(X1hX2X4X3t ↓ X1

hX3
t). (ii) Reversing s gives s→1 = ϖ

→1
3 ϖ

→1
2 ϖ

→1
1 .

↗

↗

1

X1

2

X2

3

X3

2

X4

[ X1 X2 X3 X4 ]

[ 1 2 3 2 ]

Figure 2.11: Family-annotated linear chromosome. The colors indicate to which family each
marker belongs.

⇀(ext(A)). Although G(A) and EXT(A) are defined as multisets, each of their elements “re-
members” to which element it corresponds in the set of markers or in the set of marker
extremities:

G(A) = { 1, 2, 3, 2, 2, 3, 4 }
⇀ ↖ ↙ ↙ ↙ ↙ ↙ ↙ ↙

M(A) = { X1, X2, X3, X4, X5, X6, X7, }
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2.4 Types of pairs of family-annotated genomes

EXT(A) = { 1h,1t, 2h,2t, 3h,3t, 2h,2t, 2h,2t, 3h,3t, 4h, 4t }
⇀ ↖ ↙ ↙ ↙ ↙ ↙ ↙ ↙

ext(A) = { Xh
1
,Xt

1
, Xh

2
,Xt

2
, Xh

3
,Xt

3
, Xh

4
,Xt

4
, Xh

5
,Xt

5
, Xh

6
,Xt

6
, Xh

7
,Xt

7
, }

Indeed, the original unambiguous marker name can be understood as a “hidden” property
of an annotated marker, and this hidden property can be acessed at any time. The same
unambiguous correspondence exists for the (multi) set of annotated adjacencies ADJ(A) =
⇀(adj(A)) and for the (multi) set of annotated telomeres TEL(A) = ⇀(tel(A)):

ADJ(A) = { 1h2h, 2t3t, 3h2h, 2h3h, 3t4h }
⇀ ↖ ↙ ↙ ↙ ↙ ↙

adj(A) = { Xh
1
Xh
2
, Xt

2
Xt
3
, Xh

3
Xh
4
, Xh

5
Xh
6
, Xt

6
Xh
7
, }

TEL(A) = { 1t, 2t, 2t 4t }
⇀ ↖ ↙ ↙ ↙ ↙

tel(A) = { Xt
1

Xt
4
, Xt

5
Xt
7

}

For a given family N ∝ F(A), we denote by ”(N,A) the number of occurrences of N in A. In
our example above, ”(2,A) = 3, ”(3,A) = 2, and ”(1,A) = ”(4,A) = 1.

Any genome is natural and may contain duplicates from the same family (such as in the
example given above). However, if a genome A contains a single marker from each family,
that is, if ”(N,A) = 1 for each N ∝ F(A), then genome A is said to be singular. In this case,
the sets of family-annotated markers G(A), marker extremities EXT(A), adjacencies ADJ(A)
and telomeres TEL(A) are simple sets.

2.4 Types of pairs of family-annotated genomes

Given a pair of genomes A and B, if the markers of A and B are collectively grouped into
families, we can then compare the structural organization of A and B. This is due to the
fact that, if a marker X from genome A and a marker Y from genome B belong to the same
family, markers X and Y are considered to be equivalent.

Any pair of family-annotated genomes A and B is said to be natural. If, however, genomes A
and B share some common property according to their annotated markers, we may assign
more specific classifications to the pair:

• If F(A) = F(B) and, for each N ∝ F(A), we have ”(N,A) = ”(N,B), then the pair of
genomes A and B is said to be balanced. Otherwise, if there is any N↓ ∝ F(A) ≃ F(B),
such that ”(N↓,A) ⇔= ”(N↓,B), the pair is said to be unbalanced. Balanced genomes
are said to have the same content, while unbalanced genomes are said to have unequal
contents.

• If both genomes A and B are singular, then the pair of genomes A and B is said to be
singular. A pair of singular genomes can be unbalanced but is always unambiguous,
meaning that the correspondence of genes can be established in a unique way.
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2 Basic Definitions

• A pair of genomes that is singular and balanced is said to be canonical. Two genomes
in a canonical pair are therefore unambiguous and have the same content.

2.5 Comparing family-annotated genomes: sorting and distance

A sequence s of k operations that can be (structural) DCJs and (content-modifying) sub-
stitutions and indels transforming a genome A into another genome B is called a sorting
scenario whose length is k. An example is given in Figure 2.12. The sorting problem con-
sists of finding a parsimonious (minimum-length) scenario transforming one genome into the
other.

Closely related to the sorting is the genomic distance problem, which consists of determin-
ing the length of any parsimonious sequence to sort one genome into the other. We denote
by dCdcj(A,B) the genomic distance of A and B, where C represents content-modifying op-
erations that either correspond to substitutions (including indels) or are restricted to indels
only.

Let ϖ be a content-modifying or DCJ operation and let ϖA be the genome obtained after
applying ϖ to a genome A. The operation ϖ is said to be optimal with respect to the
target genome B when dCdcj(ϖA,B) = dCdcj(A,B) ↑ 1. Similarly, a sequence of k operations
transforming A into A

↓ is optimal with respect to B, if dCdcj(A
↓
,B) = dCdcj(A,B)↑ k.

A

translocation

fusion

deletion

B

Figure 2.12: A scenario of length 3, composed of two DCJ operations (a translocation and a
fusion) and one indel (a deletion), sorting multilinear annotated genome A into unilinear
annotated genome B.

2.5.1 Restriction on substitutions and indels

For equivalent markers X and Y, our model does not allow the deletion of X followed by the
insertion of Y, nor the insertion of X followed by the deletion of Y. This restriction prevents
the free lunch artifact of sorting one genome into the other by simply substituting their
contents, or deleting the chromosomes of the first and inserting the chromosomes of the
second, ignoring their common parts [100]. It implies that, in the substitution of a block of
markers w by another block w

↓, no marker in w can be equivalent to a marker in w
↓.
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2.5 Comparing family-annotated genomes: sorting and distance

2.5.2 Complexity overview

Note that, if annotated genomes A and B are an unbalanced pair, they have some content
di!erences. In this case one can only be completely sorted into the other with DCJ and
content-modifying operations. Otherwise the genome pair is balanced, so that the genomes
have the same content. For balanced genomes no content-modifying operation is allowed
and only (structural) DCJ operations can be used for sorting. In this case we can denote
the distance by ddcj(A,B).

As we will see along this text, when no ambiguity is present, that is, in the case of a singular
or a canonical pair of genomes, both distance and sorting problems can be solved in linear
time [10,22]. In contrast, when some ambiguity is present, that is, in the case of a balanced
or natural pair of genomes containing duplicates, both distance and sorting problems are
NP-hard but optimal solutions can be computed via ILP [15,88]. A summary of these results
is given in Table 2.1.

Table 2.1: Complexity of the DCJ-indel model for distinct types of family-annotated inputs

# of occurrences
of each family

→ 1 a family can occur ↑ 2 times

balanced canonical ↓ linear [10] non-canonical ↓ NP-hard, ILP [88]

unbalanced singular ↓ linear [22] natural ↓ NP-hard, ILP [15]

2.5.3 Simplified notation for singular genomes

If genomes A and B form a singular pair, their sets of annotated markers G(.), annotated
marker extremities EXT(.), annotated adjacencies ADJ(.) and annotated telomeres TEL(.)
are simple sets. In this case, we refer to an annotated marker simply as marker. Furthermore,
since there is no ambiguity, we ignore the original unannotated sets and assume a simpler
notation in which A and B represent ⇀(C(A)) and ⇀(C(B)).
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CHAPTER 3

DCJ model of canonical genomes

Let A and B be two annotated genomes and note that, if A and B form a canonical pair,
then F(A) = G(A) = G(B) = F(B). We then denote by n↔ the cardinality of all these sets:
n↔ = |F(A)| = |G(A)| = |G(B)| = |F(B)|. Recall that, in this case, only DCJ operations are
used for sorting one genome into the other, and the corresponding DCJ distance is denoted
by ddcj(A,B).

3.1 Relational graph of canonical genomes

Finding sorting DCJ operations and computing the DCJ distance between two canonical
genomes A and B can be achieved with the help of the relational graph of A and B [18],
denoted by GR(A,B) = (V,E), whose sets of vertices and edges are defined as follows:

1. The set of vertices is V = V (A) ≃ V (B), where

V (A) contains a vertex for each extremity of each marker in M(A) and
V (B) contains a vertex for each extremity of each marker in M(B).

Each vertex v has an identifier corresponding to the unannotated marker extremity
it represents, and a label ⇀(v), corresponding to the annotated marker extremity it
represents. Note that there are 4n↔ vertices in GR(A,B), 2n↔ per genome.

2. The set of edges is E = Eadj(A) ≃ Eadj(B) ≃ Eext, where the adjacency edges are sets

Eadj(A) = {uv : u, v ∝ V (A) and uv ∝ adj(A)} and
Eadj(B) = {uv : u, v ∝ V (B) and uv ∝ adj(B)},
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3 DCJ model of canonical genomes

and the set of extremity edges (whose cardinality is 2n↔) is

Eext = {uv : u ∝ V (A) and v ∝ V (B) and ⇀(u) = ⇀(v)}.

Since any vertex in GR(A,B) has exactly one extremity edge and at most one adjacency edge,
its degree is one or two. Therefore, GR(A,B) is a collection of paths and cycles. A vertex
(marker extremity) that has no adjacency edge corresponds to a telomere and is therefore
also called telomere. Each cutpoint of each genome is represented in the graph either as an
adjacency edge or as a telomere. Recall that the number of cutpoints in A (respectively B)
is n↔ + ω(A) (respectively n↔ + ω(B)).

Each connected component of the graph alternates between extremity edges and cutpoints,
and we define the length of a component # to be the number of extremity edges in #. An
i-cycle and an i-path denote respectively a cycle and a path of length i. Note that all cycles
have even length, while paths start and end with extremity edges and can have even or odd
lengths, called even and odd paths respectively.

A cycle can be simply denoted by O. An odd path has one endpoint in a telomere from A and
the other endpoint in a telomere from B and is called an AB-path, simply denoted by AB.
Even paths have either both endpoints in A, being an AA-path, simply denoted by AA, or
both endpoints in B, being a BB-path, simply denoted by BB. Even paths can also be called
unbalanced paths, while odd paths are also called balanced paths. Let the sets of cycles, AB-,
AA- and BB-paths be respectively denoted by C, PAB, PAA and PBB. Now let $(#) give the
type of component #. For example, if # is a cycle, then $(#) = O. We can then explicitly
write the above mentioned sets as:

C = {# | # ∝ GR(A,B) and $(#) = O} ,

PAB = {# | # ∝ GR(A,B) and $(#) = AB} ,

PAA = {# | # ∝ GR(A,B) and $(#) = AA} and

PBB = {# | # ∝ GR(A,B) and $(#) = BB}.

Recall that ω(A) and ω(B) are the numbers of linear chromosomes in genomes A and B. The
endpoints of paths and chromosomes are the same telomeres, therefore we have ω(A)+ω(B) =
|PAB|+ |PAA|+ |PBB|. Furthermore, the numbers of telomeres in each genome are even. Since
each AA- or BB-path takes either zero or two telomeres per genome and each AB-path takes
one telomere per genome, the number of AB-paths must be even.

Related graphs. As illustrated in Figure 3.1, the relational graph has the same properties
of two simpler graphs that were proposed earlier:

1. The first is the so-called breakpoint graph, originally proposed in the seminal studies of
the inversion sorting and distance [7]. It can be derived from the relational graph by
contracting each extremity edge e of GR(A,B) = (V,E) and assigning to the resulting
single vertex the common annotation of the vertices that are connected by e. In the
breakpoint graph there are only adjacency edges. Furthermore, cycles also have even
length, while AB-paths are even and AA- and BB-paths are odd.
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3.1 Relational graph of canonical genomes

Breakpoint Graph 1t 1h 2t 2h 3t 3h 4t 4h 5t 5h

Relational Graph

1t 1h 5t 5h 3t 3h 2h 2t 4h 4t

1t 1h 2t 2h 3t 3h 4t 4h 5t 5h

Adjacency Graph

1t 1h5t 5h3t 3h 2h 2t4h 4t

1t 1h2t 2h3t 3h4t 4h5t 5h

Figure 3.1: For a canonical pair formed by multilinear genome A = { [ 1 5 3 ] , [ 2 4 ] } and
unilinear genome B = { [ 1 2 3 4 5 ] }, where n↑ = 5, we represent the relational graph
(in the middle) surrounded by the breakpoint graph (top) and by the adjacency graph
(bottom). Note that the number of vertices in the breakpoint graph and the numbers of
edges in both relational and adjacency graphs are equal to 2n↑. In all graphs we have a
(blue) 4-cycle, a (red) AA-path and two AB-paths.

2. The second is the so-called adjacency graph, which is bipartite and was originally
proposed in the formalization of the DCJ sorting and distance [10]. It can be derived
from the relational graph by contracting each adjacency edge a of GR(A,B) = (V,E),
concatenating in the label of the resulting single vertex the annotations of the vertices
that are connected by a. In other words, the vertices of the adjacency graph are the
adjacencies and telomeres of A and B and all edges are extremity edges. Similarly to
the relational graph, in the adjacency graph cycles have even length, AB-paths are odd
and AA- and BB-paths are even.

Relational graph of sorted and unsorted genomes. The smallest components that can
occur in GR(A,B) are 2-cycles and (AB) 1-paths, denoted short components. A cycle whose
length is greater than 2 or a path whose length is greater than 1 is called a long component.
When canonical genomes A and B are identical (or sorted), their relational graph is a collec-
tion of short components: identical genomes have the same sets of adjacencies and telomeres,
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3 DCJ model of canonical genomes

and each common adjacency corresponds to a 2-cycle while each common telomere corre-
sponds to a 1-path in GR(A,B). Recall that the length of a component corresponds to its
number of extremity edges and that GR(A,B) has 2n↔ extremity edges. Therefore, for sorted

genomes we have 2n↔ = 2|C| + |PAB| and, consequently, n↔ = |C| + |PAB|
2

. Otherwise, when
canonical genomes A and B are distinct (or unsorted), their relational graph contains at least

one long component. Therefore, in this case n↔ > |C| + |PAB|
2

. With these observations we
can already see that the DCJ operations that transform A into B must increase the numbers
of cycles and/or of AB-paths in GR(A,B). In the following we will present the results from
Bergeron et al. [10], explaining how this can be achieved.

3.2 Types of DCJ operation with respect to the relational graph

Note that, with respect to its e!ect on the relational graph, a DCJ ϖ cuts one or two
components, and rejoins the open ends to transform them into one or two new components.
A DCJ operation ϖ is said to be internal (int) to a single component #, when ϖ cuts
only at cutpoint(s) that are in #. The result of an internal DCJ ϖ can be one component
(distinct from #) or two components. In contrast, A DCJ operation ϖ is said to be a
recombination (rec) when ϖ cuts at cutpoints of two distinct components # and #↓. The
result of a recombination ϖ can be either a single component or two components (distinct
from # and #↓).

In order to describe all possible DCJ operations, we adopt the following notation to represent
the types of components and their lengths:

• O
↗ı↘: even cycle with length ı ∝ {2, 4, 6, . . .};

• AB
↗ı↘: balanced path with length ı ∝ {1, 3, 5, . . .};

• AA
↗ı↘: unbalanced AA-path with length ı ∝ {2, 4, . . .};

• BB
↗ı↘: unbalanced BB-path with length ı ∝ {2, 4, . . .};

• #↗ı↘: component of any type with length ı ′ 1.

The possible types of DCJ operation applied on cutpoints of genome A are described in
Table 3.1 [10]. Note that each DCJ operation must be of one of three types:

Gaining DCJ. Either increases |C| by one or increases |PAB| by two.

Neutral DCJ. Does not change the cardinalities of the sets C and PAB.

Losing DCJ. Either decreases |C| by one or decreases |PAB| by two.
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3.2 Types of DCJ operation with respect to the relational graph

Table 3.1: E!ects of DCJ operations (applied on cutpoints of A) on the relational graph

component(s) DCJ component(s) a!ects...

[state] [state]

1. !
↑ı+ω↓ gaining (int)↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑

losing (rec)

O
↑ı↓

!
↑ω↓ with






ı → {2, 4, 6, . . .}
ϱ ≃ 1

”(!
↑ı+ω↓

) = ”(!
↑ω↓

)

#|C| by ±1

[ r○4 / r○3
] [ r○4 / r○3

]

2. !
↑ı+ω↓ neutral (int)↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑

neutral (int)
!̌
↑ı+ω↓

with






ı → {2, 4, 6, . . .}
ϱ ≃ 1

!
↑ı+ω↓

) ⇐= !̌
↑ı+ω↓

”(!
↑ı+ω↓

) = ”(!̌
↑ı+ω↓

)[ r○4 / r○3
] [ r○4 / r○3

]

3.
AA

↑ı+ω↓

BB
↑ı→+ω→↓

gaining (int)↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑
losing (rec)

AB
↑ı+ı→↓

AB
↑ω+ω→↓ with






ı → {0, 2, 4, . . .}
ϱ → {2, 4, 6, . . .}
ı→, ϱ→ → {1, 3, 5, . . .}

#|PAB| by ±2

[ r○4 / r○3
] [ r○4 / r○3

]

4. AB
↑ı+ω→↓

AB
↑ω+ı→↓

neutral (rec)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑
neutral (rec)

AB
↑ı+ı→↓

AB
↑ω+ω→↓ with






all AB-paths distinct

ı → {0, 2, 4, . . .}
ϱ → {2, 4, 6, . . .}
ı→, ϱ→ → {1, 3, 5, . . .}[ r○4 / r○3

] [ r○4 / r○3
]

5.
AA

↑ı+ω↓

AB
↑ı→+ω→↓

neutral (rec)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑
neutral (rec)

AA
↑ı+ı→↓

AB
↑ω+ω→↓ with






all paths distinct

ı, ı→ → {2, 4, 6, . . .}
ϱ → {0, 2, 4, . . .}
ϱ→ → {1, 3, 5, . . .}[ r○4 / r○3

] [ r○4 / r○3
]

6.
BB

↑ı+ω↓

AB
↑ı→+ω→↓

neutral (rec)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑
neutral (rec)

BB
↑ı+ω→↓

AB
↑ı→+ω↓ with






all paths distinct

ı, ϱ, ϱ→ → {1, 3, 5, . . .}
ı→ → {0, 2, 4, . . .}

[ r○4 / r○3
] [ r○4 / r○3

]

7. AA
↑ı+ω→↓

AA
↑ω+ı→↓

neutral (rec)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑
neutral (rec)

AA
↑ı+ı→↓

AA
↑ω+ω→↓ with






all AA-paths distinct

ı → {0, 2, 4, . . .}
ϱ, ı→, ϱ→ → {2, 4, 6, . . .}

[ r○4 / r○3
] [ r○4 / r○3

]

8. BB
↑ı+ω→↓

BB
↑ω+ı→↓

neutral (rec)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑
neutral (rec)

BB
↑ı+ı→↓

BB
↑ω+ω→↓ with

{
all BB-paths distinct

ı, ϱ, ı→, ϱ→ → {1, 3, 5, . . .}
[ r○4

] [ r○4
]

9. AA
↑ı↓ gaining (int)↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑

losing (int)
O

↑ı↓
with ı → {2, 4, 6, . . .} #|C| by ±1

[ r○2|2
] [ r○2|1

]

10. BB
↑ı+ω↓ gaining (rec)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑

losing (rec)

AB
↑ı↓

AB
↑ω↓ with ı, ϱ → {1, 3, 5, . . .} #|PAB| by ±2

[ r○2|1
] [ r○2|2

]

11. AA
↑ı+ω↓ neutral (int)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑

neutral (rec)

AA
↑ı↓

AA
↑ω↓ with ı, ϱ → {2, 4, 6, . . .}

[ r○2|1
] [ r○2|2

]

12. AB
↑ı+ω↓ neutral (int)↑↑↑↑↑↑↑↑↑ϑϖ↑↑↑↑↑↑↑↑↑

neutral (rec)

AA
↑ı↓

AB
↑ω↓ with

{
ı → {2, 4, 6 . . .}
ϱ → {1, 3, 5, . . .}

[ r○2|1
] [ r○2|2

]
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[22] Maŕılia D. V. Braga, Eyla Willing, and Jens Stoye. Double cut and join with insertions
and deletions. J Comput Biol, 18(9):1167–1184, 2011. A preliminary version appeared
in the Proc. of WABI 2010.
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APPENDIX A

Symbols used in the adopted formalism

A,B,C genomes
⇀(.) family-annotation of marker, marker extremity, adjacency, telomere or chromosome

adj(A) set of unannotated adjacencies in genome A

ADJ(A) = ⇀(adj(A)) : set of annotated adjacencies in genome A

ext(A) set of unannotated marker extremities in genome A

EXT(A) = ⇀(ext(A)) : set of annotated marker extremities in genome A

tel(A) set of unannotated telomeres in genome A

TEL(A) = ⇀(tel(A)) : set of annotated telomeres in genome A

ϑ(A) set of cutpoints in genome A

C(A) set of unannotated chromosomes in genome A

F(A) set of families occurring in annotated genome A

G(A) = ⇀(M(A)) : set of annotated markers of genome A

M(A) set of unannotated markers of genome A

”(F,A) number of occurrences (markers) of family F in genome A

In comparison of two annotated genomes A and B:

F↔ set of common families of genomes A and B

A set of families exclusive to genome A (see also table below)
B set of families exclusive to genome B (see also table below)
G↔ (multi)set of common annotated markers of genomes A and B
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A Symbols used in the adopted formalism

Graphs and respective derived properties:

GR relational graph of canonical or singular genomes
GMR multi-relational graph of balanced or natural genomes
Gw
FFR

family-free multi-relational graph of unannotated genomes

J(.) set of junctions in the whole relational graph or in one of its connected components

GF↔ family graph of natural genomes
Gw
ς similarity graph

Gw
C

shared-content graph

Ĝw
C

perfect shared-content graph

# component (path or cycle) of a relational graph
#↗i↘ component whose length (given by the number of extremity edges) is i ′ 0
O cycle of a relational graph
O

↗i↘ cycle of (even) length i ′ 0
AA path of a relational graph starting and ending in a telomere of genome A

AA
↗i↘

AA-path of (even) length i ′ 0
AB path of a relational graph starting in a telomere of A and ending in a telomere of B
AB

↗i↘
AB-path of (odd) length i ′ 1

BB path of a relational graph starting and ending in a telomere of genome B

BB
↗i↘

BB-path of (even) length i ′ 0

$(#) type of component #
S = {# | # ∝ GR(A,B) and $(#) = O

↗0↘} : set of (circular) singletons
C = {# | # ∝ GR(A,B) and $(#) = O

↗2,4,...↘} : set of cycles of length at least 2
PAA = {# | # ∝ GR(A,B) and $(#) = AA} : set of AA-paths
PAB = {# | # ∝ GR(A,B) and $(#) = AB} : set of AB-paths
PBB = {# | # ∝ GR(A,B) and $(#) = BB} : set of BB-paths

A as a path-subscript: odd sequence of runs starting and ending in an A-run
B as a path-subscript: odd sequence of runs starting and ending in an B-run
AB path-subscript: even sequence of runs starting in an A-run and ending in a B-run
’(#) number of runs in component #
∞(#) number of transitions in component #
⇁(#) indel-potential of component #
σ(#) substitution-potential of component #

O ortholog-set

Õ complement of ortholog-set O
H ortholog-maxset

H̃ complement of ortholog-maxset H
L sibling-set

L̃ complement of sibling-set L
J sibling-maxset

J̃ complement of sibling-maxset J
Q capping-maxset
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