
6 Triangular inequality and restricted models for distances of singular genomes

In the following we will examine restricted models considering linear genomes that are sin-
gular. We start by describing in more detail the special operations that occur in restricted
scenarios.

6.2.1 Transposition and block-interchange via (ei)-composition

As we have seen, besides the structural rearrangements that correspond to a single DCJ
operation, some additional rearrangements correspond to two DCJ operations. A block-
interchange occurs when two segments exchange their positions. A particular case is a
transposition, in which one of the two exchanged segments is empty. When a block in-
terchange a!ects one single chromosome it is said to be internal, otherwise external. These
rearrangements require at least three distinct cuts and cannot be represented by a single DCJ
operation. Instead, they can be obtained by a composition of two DCJ operations. While
external block interchanges and transpositions can always be mimicked by two consecutive
translocations (Figure 6.3 (i)), internal ones can only be mimicked by two DCJs if the first
is a circular excision and the second is a circular integration (Figure 6.3 (ii)). We call such
a pair of operations an (ei)-composition. Note that, without (ei)-compositions, an internal
block-interchange or transposition requires three inversions, as illustrated in Figure 6.3 (iii).

(i) (ii) (iii)

1 4 3 2 5

translocation →
1 4 5 2 3

translocation →
1 2 3 4 5

1 4 3 2 5

excision ↑
1 2 5 4 3

integration ↓
1 2 3 4 5

1 4 3 2 5

→ inversion

1 3 4 2 5

inversion →
1 3 2 4 5

inversion →
1 2 3 4 5

Figure 6.3: (i) External block interchange of markers 4 and 2 mimicked by two translocations.
(ii) Internal block interchange of markers 4 and 2 mimicked by an (ei)-composition. (iii)
Without a circular excision, the internal block interchange of markers 4 and 2 requires at
least three inversions to be mimicked.

6.2.2 Formalizing restricted DCJ models

Let A and B be two linear genomes. A scenario sorting A into B is said to be restricted
when each circular excision is immediately followed by a circular integration, forming an
(ei)-composition. The restricted distance of A and B, is the minimum cost of a restricted
scenario sorting A into B.

• If linear genomes A and B are canonical, we have the restricted DCJ distance of A
and B, denoted by rddcj(A,B). It is clear that ddcj(A,B) → rddcj(A,B).

• If A and B are singular, we have the restricted DCJ-indel distance of A and B, denoted
by rdiddcj(A,B), and the restricted DCJ-substitutuion distance of A and B, denoted
by rdsbdcj(A,B). Again, diddcj(A,B) → rdiddcj(A,B) and dsbdcj(A,B) → rdsbdcj(A,B).
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6.2 Restricted DCJ models for sorting linear genomes

6.2.3 Restricted and unrestricted DCJ distances are the same

Let A and B be two canonical linear genomes. Consider a scenario sorting A into B in which
an intermediate step is the excision of circular chromosome K→. Observe that K→ must have
at least one adjacency ω1 = ε1ε2 that is not part of any chromosome of B. Moreover, B
must have a cutpoint ϑ2 = ε1ε3 such that ε3 is not part of any adjacency in K→. Note that
marker extremities ε1, ε2, ε3 are distinct. Furthermore, if ε3 is empty, then ϑ2 is a telomere.
By creating the cutpoint ϑ2, circular chromosome K→ is integrated into a linear chromosome
by a gaining DCJ. This guarantees that rddcj(A,B) = ddcj(A,B) [99].

Finding an optimal restricted DCJ-indel sorting scenario

Below we will describe the most e”cient available algorithm for the restricted canonical DCJ
sorting, which mimics the solution as the sorting of a permutation represented as a balanced
tree structure and runs in time O(n↑ log n↑) [60].

Data structure for handling permutations. Our sorting algorithm uses a data structure
for handling permutations by Kaplan and Verbin [57]. It can be traced back to Chrobak
et al. [34], where it was used to improve heuristics for the traveling salesman problem. It
supports the following three operations in logarithmic time: find the i

th marker in a linear
chromosome, return the position of marker X, and perform a reversal operation. Linear
chromosomes can be represented by a balanced tree supporting operations split and merge
(e.g., red-black tree or splay tree). The order is the same as the left-to-right order of markers
on the chromosome. In each node of the tree, we store one marker, its orientation, number
of descendants, and a reverse flag. A reverse flag being “on” signifies that the whole subtree
is reversed. The reverse flag of node v can be cleared (“pushed down”) by changing v’s
orientation, swapping its children and flipping their reverse flags. Reversing a segment from
i to j can be implemented as follows:

1. Find the ith and j
th markers (using the information about sizes of subtrees and reverse

flags).

2. Split the tree into three parts: T1 with markers before i, T3 with markers after j, and
T2 with the segment from i to j.

3. Flip the reverse flag in the root of T2, and

4. Merge T1, T2 and T3.

We store a lookup table with a pointer to the corresponding node of a tree for every marker.
In this way, we can find the position of any marker in logarithmic time. To support multi-
linear genomes, we simply concatenate the chromosomes with a delimiter between each pair,
and in each node we store the number of delimiters in its subtree. This way, given a marker
X, we can tell on which chromosome it is by counting the number of delimiters before X. To
support di!erent rearrangement operations, we can express them as a sequence of reversals.
For example, block interchange can be mimicked by four reversals; if we add su”ciently
many delimiters at the end of the sequence (representing empty chromosomes), we can also
mimic fusions and fissions.
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6 Triangular inequality and restricted models for distances of singular genomes

Algorithm description. As already mentioned and described in Chapter 3, Bergeron et
al. [10] gave a linear-time algorithm for DCJ sorting disregarding the constraint of rein-
corporating circular chromosomes immediately. The solution can be easily adapted to a
quadratic-time algorithm for the restricted version: after each step, check whether a circular
chromosome was created and if so, find the appropriate DCJ operation acting on adjacencies
in the circular and the original linear chromosome that reintegrates the circular chromosome.
It is not obvious how to do this e”ciently (say in polylogarithmic time).

Yancopoulos et al. [99] had proposed to transform A into B by restricted sorting in four
stages: (0) Add caps to the ends of linear chromosomes. (1) By translocations, fusions
and fissions transform A into A

↓ such that chromosomes in A
↓ and B have the same marker

contents. (2) Perform oriented reversals to get A
↓↓ with all markers in the same direction

as in B. (3) Finally, use block interchanges to transform A
↓↓ into B . Stages 2 and 3 can

be implemented in O(n↑ log n↑) time using the data structure described above (Swenson et
al. [92]; Feng and Zhu [47]). Thus, a unichromosomal restricted DCJ sorting can be solved
in O(n↑ log n↑) time. However, it is not obvious how to implement stage 1 e”ciently. Our
algorithm is based on the following observation:

Observation 1 Let X, Y be two markers that are adjacent in B, but not in A. If X and Y

are on di!erent chromosomes in A, there is a translocation that puts them together. If X
and Y are on the same chromosome and have a di!erent orientation, there is a reversal that
puts them together. These operations are optimal in the DCJ model. Transposition and block
interchange take two DCJ operations. These operations are optimal if they create two new
common adjacencies and destroy none.

This is simply because, even more generally, k operations, that create k new adjacencies and
destroy none, create k new cycles in the relational graph, and thus decrease the distance
by k.

Theorem 12 A restricted optimal DCJ scenario transforming multilinear genome A into
multilinear genome B can be found in O(n↑ log n↑) time.

Proof: The ends of linear chromosomes, telomeres, produce some di”culties and nasty special
cases. Here, again, we can bypass these special cases with the capping technique, but this
time transforming A and B into multilinear co-tailed and not circular genomes: we adjoin
new markers (caps) to the ends of the lienar chromosomes so that we do not change the
distance and we do not have to worry about telomeres any more. We find all the paths in
the relational graph GR(A,B). Paths of odd length have one end in A and one in B – simply
adjoin a new marker (properly oriented) to the two telomeres. This increases the number of
markers by one, but instead of an odd path, we have a cycle and a 1-path, so the distance
does not change. For paths starting and ending in A, add two new markers to the ends of
A and add a new chromosome consisting of just these two markers (properly oriented) to
B. The case with a path starting and ending in B is symmetric. The number of markers
increases by 2, but instead of an even path, we have a cycle and two odd paths, so the
distance does not change. Capping of all chromosomes can be done in linear time.

Let A↓ and B
↓ be the capped co-tailed multilinear genomes and let p be the number of caps

added to them. Note that the number of chromosomes in A
↓ and in B

↓ is m = p
2
. Without loss

of generality, we may assume that the p+ n↑ markers in the m capped linear chromosomes
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6.2 Restricted DCJ models for sorting linear genomes

of A↓ and B
↓ are the numbers from 1 to p+n↑; and that the target genome B↓ is the identity

permutation split into the successive m chromosomes:

B
↓ = { [1 2 . . . K1-1 K1] [K1+1 K1+2 . . . K2-1 K2] . . . [Km↔1+1 Km↔1+2 . . . Km-1 Km] }.

The caps are increasing from left to right: 1 < K1 < K2 < K3 < . . . < Km↔1 < Km = p + n↑.
The representation of the initial genome is

A
↓ = { [1 . . . K1] [K1+1 . . . K2] . . . [Km↔1+1 . . . Km] }.

We will be transforming A
↓ into B

↓ gradually “from left to right”: once we have transformed
the beginning of a chromosome in A

↓ to X X+1 X+2 . . . Y we extend it by moving Y+1 next to Y.
We adopt the notation Z̈ to represent a marker Z with unkown orientation.

There are several cases we need to consider:

1. If Y+1 is already next to Y we are done!

2. If Y+1 is on a di!erent chromosome than Y , we can always use a translocation. In the
rest of the proof, we assume that Y+1 is on the same chromosome, to the right of Y.

3. If Y and Y+1 have di!erent orientation, we can use a reversal.

Otherwise, Y and Y+1 have the same orientation. Following Christie [33], find marker Z
with the highest number between Y and Y+1 and find marker Z+1.

4. If Z+1 is on a di!erent chromosome, we can use a translocation to move it next to Z; this
operation also moves Y+1 to another chromosome, so we can use another translocation
to move it next to Y.

Otherwise the situation is Y . . . Z̈ . . . Y+1 . . . Z̈+1 (since Z is the highest number between
Y and Y+1 and the part of the chromosome to the left of Y is already sorted, Z+1 must
be to the right of Y+1).

5. If Z and Z+1 have di!erent orientations, we can use a reversal to move Z+1 next to Z;
this will also change the orientation of Y+1, so in the next step, we can use another
reversal to move Y+1 next to Y.

6. Finally, if Z and Z+1 have the same orientation, we interchange blocks

(i) Y↑. . . Z↓ . . . ↑Y+1 . . .↓Z+1 ! Y↑Y+1 . . .↓ . . . ↑ . . . Z↓Z+1

if both Z and Z+1 have direct orientation; or

(ii) Y↑. . .↓Z . . . ↑Y+1 . . . Z+1↓ ! Y↑Y+1 . . . Z+1↓Z . . . ↑. . .↓

if both Z and Z+1 have reverse orientation.

In both cases (i) and (ii), with two DCJs we move Y+1 next to Y and Z+1 next to Z.

Note that p → 2n↑. Every step can be implemented in O(log n↑) time using an extended
version of the data structure described above. We need the data structure to support the
following operations: (1) Given a marker, find the chromosome that contains it. (2) Perform
a DCJ operation. (3) Given interval Y . . . Z, find the marker with the highest number on the
chromosome between Y and Z. To support this query, we store the highest number in the
subtree in each node. "
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Vialette. On the approximability of comparing genomes with duplicates. J Graph Algo
App, 13(1):19–53, 2009.

[7] Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by reversals.
In Proceedings of FOCS 1993, pages 148–157, 1993.

[8] Anne Bergeron. A very elementary presentation of the hannenhalli-pevzner theory. In
Proc. of CPM, volume 2089 of LNCS, pages 106–117, 2001.

[9] Anne Bergeron, Ste!en Heber, and Jens Stoye. Common intervals and sorting by
reversals: a marriage of necessity. Bioinformatics, 18(Suppl. 2):S54–G63, 2002.

[10] Anne Bergeron, Julia Mixtacki, and Jens Stoye. A unifying view of genome rearrange-
ments. In Proc. of WABI, volume 4175 of Lecture Notes in Bioinformatics, pages
163–173, 2006.

[11] Anne Bergeron, Julia Mixtacki, and Jens Stoye. A new linear time algorithm to com-
pute the genomic distance via the double cut and join distance. Theoretical Computer
Science, 410(51):5300–5316, 2009.

[12] Matthias Bernt, Daniel Merkle, and Martin Middendorf. Genome rearrangement based
on reversals that preserve conserved intervals. IEEE/ACM Trans Comput Biol Bioin-
form, 3(3):275–288, 2006.
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[23] Maŕılia D. V. Braga, Daniel Doerr, Diego P. Rubert, and Jens Stoye. Family-free
genome comparison. In João Carlos Setubal, Peter F. Stadler, and Jens Stoye, editors,
Comparative Genomics: Methods and Protocols, volume 2802 of Methods in Molecular
Biology, pages 57–72. Springer, New York, 2024. Second edition; for the first edition
see [42, from 2018].
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Genomic Distance. Algorithms Mol Biol, 16(4), 2021. A preliminary version appeared
in the Proc. of WABI 2020.

[83] Marie-France Sagot and Eric Tannier. Perfect sorting by reversals. In Proc. of CO-
COON, volume 3595 of LNCS, pages 42–51, 2005.

[84] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol, 4(4):406–425, 1987.

[85] David Sanko!. Edit distance for genome comparison based on non-local operations.
In Proc. of CPM, volume 644 of Lecture Notes in Computer Science, pages 121–135,
1992.

[86] David Sanko!. Genome rearrangement with gene families. Bioinformatics, 15(11):909–
917, 1999.

[87] João C. Setubal and Peter F. Stadler. Gene phylogenies and orthologous groups. In
João C. Setubal, Jens Stoye, and Peter F. Stadler, editors, Comparative Genomics:
Methods and Protocols, pages 1–28. Springer, New York, 2018.

153



Bibliography

[88] Mingfu Shao, Yu Lin, and Bernard Moret. An exact algorithm to compute the double-
cut-and-join distance for genomes with duplicate genes. J Comput Biol, 22(5):425–435,
2015.

[89] Guanqun Shi, Meng-Chih Peng, and Tao Jiang. MultiMSOAR 2.0: an accurate tool
to identify ortholog groups among multiple genomes. PLoS One, 6(6:e20892), 2011.

[90] Guanqun Shi, Liqing Zhang, and Tao Jiang. MSOAR 2.0: Incorporating tandem du-
plications into ortholog assignment based on genome rearrangement. BMC Bioinform,
11(10), 2010.

[91] Alfred H. Sturtevant. A case of rearrangement of genes in drosophila. In Proc. of Natl
Acad Sci USA, volume 7, pages 235–237, 1921.

[92] Krister M. Swenson, Vaibhav Rajan, Yu Lin, and Bernard M.E. Moret. Sorting signed
permutations by inversions in O(n log n) time. J Comput Biol, 17(3):489–501, 2010.

[93] Eric Tannier, Chunfang Zheng, and David Sanko!. Multichromosomal median and
halving problems under di!erent genomic distances. BMC Bioinformatics, 10:120,
2009.

[94] Tamir Tassa. Finding all maximally-matchable edges in a bipartite graph. Theoretical
Computer Science, 423:50–58, 2012.

[95] Roman L. Tatusov, Eugene V. Koonin, and David J. Lipman. A genomic perspective
on protein families. Science, 278(5338):631–637, 1997.

[96] Fredj Tekaia. Inferring orthologs: Open questions and perspectives. Genomics Insights,
9:GEI.S37925, 2016.
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APPENDIX A

Symbols used in the adopted formalism

A,B,C genomes
⇀(.) family-annotation of marker, marker extremity, adjacency, telomere or chromosome

adj(A) set of unannotated adjacencies in genome A

ADJ(A) = ⇀(adj(A)) : set of annotated adjacencies in genome A

ext(A) set of unannotated marker extremities in genome A

EXT(A) = ⇀(ext(A)) : set of annotated marker extremities in genome A

tel(A) set of unannotated telomeres in genome A

TEL(A) = ⇀(tel(A)) : set of annotated telomeres in genome A

ϑ(A) set of cutpoints in genome A

C(A) set of unannotated chromosomes in genome A

F(A) set of families occurring in annotated genome A

G(A) = ⇀(M(A)) : set of annotated markers of genome A

M(A) set of unannotated markers of genome A

”(F,A) number of occurrences (markers) of family F in genome A

In comparison of two annotated genomes A and B:

F↔ set of common families of genomes A and B

A set of families exclusive to genome A (see also table below)
B set of families exclusive to genome B (see also table below)
G↔ (multi)set of common annotated markers of genomes A and B
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A Symbols used in the adopted formalism

Graphs and respective derived properties:

GR relational graph of canonical or singular genomes
GMR multi-relational graph of balanced or natural genomes
Gw
FFR

family-free multi-relational graph of unannotated genomes

J(.) set of junctions in the whole relational graph or in one of its connected components

GF↔ family graph of natural genomes
Gw
ς similarity graph

Gw
C

shared-content graph

Ĝw
C

perfect shared-content graph

# component (path or cycle) of a relational graph
#↗i↘ component whose length (given by the number of extremity edges) is i ′ 0
O cycle of a relational graph
O

↗i↘ cycle of (even) length i ′ 0
AA path of a relational graph starting and ending in a telomere of genome A

AA
↗i↘

AA-path of (even) length i ′ 0
AB path of a relational graph starting in a telomere of A and ending in a telomere of B
AB

↗i↘
AB-path of (odd) length i ′ 1

BB path of a relational graph starting and ending in a telomere of genome B

BB
↗i↘

BB-path of (even) length i ′ 0

$(#) type of component #
S = {# | # ∝ GR(A,B) and $(#) = O

↗0↘} : set of (circular) singletons
C = {# | # ∝ GR(A,B) and $(#) = O

↗2,4,...↘} : set of cycles of length at least 2
PAA = {# | # ∝ GR(A,B) and $(#) = AA} : set of AA-paths
PAB = {# | # ∝ GR(A,B) and $(#) = AB} : set of AB-paths
PBB = {# | # ∝ GR(A,B) and $(#) = BB} : set of BB-paths

A as a path-subscript: odd sequence of runs starting and ending in an A-run
B as a path-subscript: odd sequence of runs starting and ending in an B-run
AB path-subscript: even sequence of runs starting in an A-run and ending in a B-run
’(#) number of runs in component #
∞(#) number of transitions in component #
⇁(#) indel-potential of component #
σ(#) substitution-potential of component #

O ortholog-set

Õ complement of ortholog-set O
H ortholog-maxset

H̃ complement of ortholog-maxset H
L sibling-set

L̃ complement of sibling-set L
J sibling-maxset

J̃ complement of sibling-maxset J
Q capping-maxset

156


