
Optimizations for a single
thread

Only after you’ve benchmarked

Imagine being at a library

You want to read about a certain topic.

You are at a table, reading books.

You

Imagine being at a library

- You take a book and start to read it
- When you read a word, it is fast to read the next one, if

it is on the same page

You

Imagine being at a library

- Starting to read another book is slower, because you
have to fetch it first

- You might want to read the previous book again, so
keep it close to you

You

Imagine being at a library

You

- Fetching a book from another library will take days or
weeks

CPU

Very simple model of a computer

Arithmetic
Logic Unit Registers

Caches

L1 L2 L3

RAM HDD
SSD

Network,
etc.

CPU

Very simple model of a computer

Arithmetic
Logic Unit

Registers Caches

L1 L2 L3

RAM HDD
SSD

Network,
etc.

Effect of cache misses
pub fn look_and_access(vector: &[usize]) {

 let initial_element = vector[0];

 let mut element = initial_element;

 loop {

 element = vector[element];

 if element == initial_element {

 break;

 }

 }

}

4 3 5 2 1 0

Effect of cache misses

1 000 000 elements

10 000 elements

Take home message

- keep the data is local as possible
- avoid indirections
- if you store a matrix, think about the order (column vs lines)
- replace hash tables by vectors for small batches of data
- …

A CPU is actually a pipeline

An ALU consists of multiple parts.

One instruction will “visit” these parts one by one.

ALU

load

execute

store

c = a + b

A CPU is actually a pipeline

An ALU consists of multiple parts.

One instruction will “visit” these parts one by one.

ALU

load

execute

store

5 + 6

A CPU is actually a pipeline

An ALU consists of multiple parts.

One instruction will “visit” these parts one by one.

ALU

load

execute

store

11

A CPU is actually a pipeline

An ALU consists of multiple parts.

One instruction will “visit” these parts one by one.

ALU

load

execute

storec = 11

A CPU is actually a pipeline

An ALU consists of multiple parts.

One instruction will “visit” these parts one by one.

ALU

load

execute

storec = 11

Time wasted

A CPU is actually a pipeline

An ALU consists of multiple parts.

One instruction will “visit” these parts one by one.

ALU

load

execute

storec = 11

56

15 + 79

c = a + b

f = d + e

i = g + h

A CPU is actually a pipeline - what happens on an if ?

c = a + b

if c < 5 {

i = g + h

}

A CPU is actually a pipeline - what happens on an if ?

c = a + b

if c < 5 {

i = g + h

}

Executed without checking the
condition

A CPU is actually a pipeline - what happens on an if ?

c = a + b

if c < 5 {

i = g + h

}

Executed without checking the
condition

- if condition is true, you win
- else, you rollback

A CPU is actually a pipeline - what happens on an if ?

c = a + b

if c < 5 {

i = g + h

}

Executed without checking the
condition

- if condition is true, you win
- else, you rollback

Predict which branch to take based
on previous iterations

Effect of if branch
pub fn count_below_naive(vector: &[usize], n: usize) -> usize {

 let mut count = 0;

 for element in vector {

 if *element < n {

 count += 1;

 }

 }

 count

}

pub fn count_below_std(vector: &[usize], n: usize) -> usize {

 vector.iter().filter(|x| **x < n).count()

}

Effect of if branch
// Branch prediction hint. This is currently only available on nightly but it

// consistently improves performance by 10-15%.

#[cfg(not(feature = "nightly"))]

use core::convert::identity as likely;

#[cfg(feature = "nightly")]

use core::intrinsics::likely;

// likely has no effect for the usual compiler

// but on the nightly one, it may help the compiler

pub fn count_below_naive(vector: &[usize], n: usize) -> usize {

 let mut count = 0;

 for element in vector {

 if likely(*element < n) {

 // code here will be faster, e.g. in cache

 } else {

 // code here will be slower to execute

 }

 count

}

Take home message

- keep the data is local as possible
- avoid ifs

- These two are equivalent:
- if *element < n { count += 1;}

- count += (*element < 1) as usize;

Let’s sum two slices

pub fn sum_two_vec(a: &[u8], b: &[u8]) -> Vec<u8> {

 let mut c = Vec::with_capacity(a.len());

 for i in 0..a.len() {

 c[i] = a[i] + b[i];

 }

 c

}

sum of u8, but my
computer can
manipulate more bits at
a time

hidden if branch here

Same function in SIMD
#[cfg(target_arch = "x86_64")]

use std::arch::x86_64::{__m256i,

 _mm256_adds_epu8,

 _mm256_loadu_si256,

 _mm256_storeu_si256

};

#[cfg(target_arch = "x86_64")]

pub fn sum_two_vec(a: &[u8], b: &[u8]) -> Vec<u8> {

 // now we need to check the len manually

 // as the compiler will not do it for us

 assert_eq!(a.len(), b.len());

 let len = a.len();

 let mut c = vec![0u8; len];

 // 256 bits / 8 = 32 bytes per __m256i

 let chunks = len / 32;

 let remainder = len % 32;

 let a_ptr = a.as_ptr();

 let b_ptr = b.as_ptr();

 let c_ptr = c.as_mut_ptr();

 // Safety:

 // We’re in a x86-64 architecture (+ more conditions)

 unsafe {

 for i in 0..chunks {

 // cast into 256 bit registers

 let a_chunk =

 _mm256_loadu_si256(a_ptr.add(i * 32) as *const __m256i);

 let b_chunk =

 _mm256_loadu_si256(b_ptr.add(i * 32) as *const __m256i);

 // saturated addition

 let sum = _mm256_adds_epu8(a_chunk, b_chunk);

 // store the result

 _mm256_storeu_si256(c_ptr.add(i * 32) as *mut __m256i, sum);

 }

 }

 // Handle the remainder with scalar code

 let offset = chunks * 32;

 for i in 0..remainder {

 c[offset + i] = a[offset + i].wrapping_add(b[offset + i]);

 }

 c

}

