Macro in Rust

What are macros?

Macros are pieces of code that write other pieces of code.

When called, they expand into more code.

Why not use functions?

Unlike functions:

- macros always expand at compile time, so they don’t cost any runtime
- macros can have a variable number of arguments

Multiple types of macros

There are two kind of macros in Rust: procedural and generative.
There are two ways of using macros in Rust:

- function-like style
- derive style
- attribute style

Declarative Macros Procedural Macros
Function-like macros least powerful can parse everything
Derive macros useful to annotate structures

Attribute macros useful to annotate code

That sounds complicated, why not use C macros?

C macros are based on “search and replace”. This is simple to understand, but
extremely hard to use.

That sounds complicated, why not use C macros?

Naive macros are OK for simple cases

#include <stdio.h>

#include <stdio.h>

#define MULTIPLY (a, b) a * b éé
int main () {
int main () { int ¢ =2 * 5;
int ¢ = MULTIPLY (2, 5); printf ("%d", c);

printf ("sd", c); }

That sounds complicated, why not use C macros?

Naive macros are OK for simple cases, but broken for others

#include <stdio.h>

#include <stdio.h>

#define MULTIPLY(a, b) a * b $
int main () {
int main () { int ¢c =1+ 1 * 5;
int ¢ = MULTIPLY (1+1, 5); printf ("%d", c);

printf ("sd", c); }

That sounds complicated, why not use C macros?

Naive macros are OK for simple cases, but broken for others, so you need
parentheses.

#include <stdio.h>

#include <stdio.h>

#define MULTIPLY (a, b) [(a) * (b) ﬁé
int main () {
int main () { int ¢ = (1L + 1) * (5);
int ¢ = MULTIPLY (1+1, 5); printf ("%d", c);

printf ("sd", c); }

That sounds complicated, why not use C macros?

Naive parentheses are OK for simple cases

#include <stdio.h>

#include <stdio.h>

#define ADD(a, b) (a) + (b) é
int main () {
int main() { int ¢ = (1) + (5)
int ¢ = ADD(1, 5); printf ("%d", c);

printf ("sd", c); }

That sounds complicated, why not use C macros?

Naive parentheses are OK for simple cases, but broken for others

#include <stdio.h>

#define ADD(a, b) (a)

int main () {

int ¢ = 2 * ADD(1,
printf ("sd", c);

+

5);

(b)

#include <stdio.h>

int main () {
int ¢ =2 * (1) + (5);
printf ("%d", c);

That sounds complicated, why not use C macros?

Naive parentheses are OK for simple cases, but broken for others, so you need
even more parentheses.

#include <stdio.h>

#include <stdio.h>

#define ADD(a, b) [((a) + (b)) i};
int main () {
int main () { int ¢ =2 * ((1) + (5));
int ¢ =2 * ADD(1, 5); printf ("%d", c);

printf ("sd", c); }

That sounds complicated, why not use C macros?

#include <stdio.h>
// let's suppose we need a block here #include <stdio.h>
#define MAKE ZERO (x) \ i%
{ \ int main () {
x = 0; \ int a = 4;
} {
a =20
int main() { }
int a = 4; printf ("sd", a);
MAKE ZERO(a) ; }
printf ("%d", a);
}

nat sounds complicated, why not use C macros?

#include <stdio.h>

// let's suppose we need a block here

#define MAKE ZERO (x) \

int main() {
int a = 4;
if (a == 4)
MAKE ZERO (a) ;
else
a = 8;

printf ("%d", a):;

#include <stdio.h>

int main () {
int a = 4;
if (a == 4) {
a = 0;
}
else
a =8

printf ("%d", a);

nat sounds complicated, why not use C macros?

#include <stdio.h>

// let's suppose we need a block here
#define MAKE ZERO (x) \
do {
x =

0;
} while (0)

int main() {
int a = 4;
if (a == 4)
MAKE ZERO (a) ;
else
a = 8;

printf ("%d", a):;

#include <stdio.h>

int main ()

Declarative Macros

Declarative Macros - simple use case

macro_rules! shout {
(Smsg:expr) => {

println!("& {}", $msg.to uppercase());

fn main () {

shout! ("time for some macro";

fn main () {

println!("&

{}", Smsg.to uppercase());

Declarative Macros - simple use case

macro_rules! add {
(Sa:expr, S$b:expr) => {
Sa + $b

fn main() {
let sum = 1 * add! (1, 5);

println! (" {sum}");

Declarative Macros - variable number of arguments

macro_rules! add {
(Sfirst:expr $(, S$Srest:expr)*) => {
Sfirst $(+ Srest)*
}i
}

fn main() {
let sum =1 * add! (1, 5, 10);
println! (" {sum}");

}

Declarative Macros - variable number of arguments

[macro_export]
macro_rules! vec {
($(Sx:expr),*) => {
{

let mut temp vec = Vec::new();

S
temp vec.push ($x);
) *

temp vec

Simplified version of the vec macro

How to see the result of a macro I'm writing?

mod macro test { Cargo eXpand maCFO_teSt
fn function() {
let sum = 1 * add! (1, 5);
mod macro_test ({
println! ("{sum}"); fn function() |
} let sum = 1 * (1 + 5);
}
{

t:std::io:: print(format args! ("{0}\n", sum));

How to see the result of a macro I'm writing?

To do it automatically every time you save your file:
1: cargo install --locked bacon

2: In bacon.toml:

[jobs.macro]
command = ["cargo", "expand", "macro test"]

need stdout = true

3: bacon macro

Good practices

Use the complete path of the functions instead of their names

- Always with ::
- This prevents collision
- The expanded code is ugly, but no one will see it

Don’t overdo it

- Macros are hard to read and maintain
- Your IDE might not fully support macros

Procedural Macros

Warning

This is a very advanced topic. These slides does not cover enough to understand
it.

| would suggest having a look at this video if you want to understand what’s going
on: https://www.youtube.com/watch?v=SMCRQj9Hbx8

https://www.youtube.com/watch?v=SMCRQj9Hbx8

What are procedural macros

Proc-macros:

are way more complex

must be placed in their project

increases your compile time

that project must declare it exposes proc macro in their cargo.toml

But:

- They are very powerful

Let’s write a proc-macro builder

use builder macro::Builder;

#[derive (Builder)]
struct T {

a: String,

b: u32,

c: u32,

What we need to use

use proc _macro::TokenStream;
use proc macro2::{Ident, Span, TokenStream as TokenStream2};
use quote::quote;

use syn::{Derivelnput, Type, parse macro_ input};

The most important part: model with types

struct FieldData {
original field name: Ident,
original field type: Type,
associated generic name: Ident,
name of struct provided: Ident,

name of struct not provided: Ident,

struct FieldDatas {
data: Vec<FieldData>,

Converting a type to a token stream

impl FieldDatas {

fn compute structs for each fields(&self) -> Vec<TokenStream2> {
self.data
.iter ()
.map (| field| {
let name of struct provided = field.name of struct provided.clone();

let original field type = field.original field type.clone();
let name of struct not provided = field.name of struct not provided.clone();
quote! {
struct #name of struct provided {
data: #original field type
}

struct #name of struct not provided {}

1)
.collect ()

Proc-macro - builder overview

#[proc_macro derive (Builder)]
pub fn my macro derive (input: TokenStream) -> TokenStream {
// Parse the input tokens into a syntax tree

let input = parse macro input! (input as Derivelnput);

let field datas = match parse to fields(&input) {
Ok (x) => x,
Err(x) => {

return x;

}i

let structs_for each fields = field datas.compute structs for each fields();

// Convert the expanded code into a TokenStream and return it
let mut extanded = TokenStream2::new();
for structs in structs for each fields {
extanded.extend (structs) ;
}

TokenStream: : from(extanded)

