
Universität Bielefeld
Technische Fakultät

AG Genominformatik
Dr. Lucas Robidou

The Rust programming language

Summer 2024 / 2025

Exercises

1 Modelling

1. A Pokémon is a creature that has a positive amount of maximum HP1, a positive amount of current
HP, and:

• possibly some non-volatile status

• possibly some volatile status

Non-volatile statuses are Burn, Freeze, Paralysis, and Poison (when Poisoned, a Pokémon can be Badly
poisoned, or not). Volatile statuses are Infatuation, Confusion, Curse, and Flinch.
Write a Pokémon struct.

2. A transaction with your debit card might look like this:

(a) The seller asks your bank to confirm that you have, say, M euros in your account.

(b) The seller asks for N euros (N ≤ M) from your bank account.

(c) The provider of your card will wait a few days before moving the money.

(d) The money is moved from your bank to the seller’s bank.

(e) The seller’s bank credits the money to the seller’s account.

• Name the states above.

• Name the transitions between these states.

• Instead of using an enum to model the states, write a struct for each possible state of a transaction
(each struct should contain the amount of money being moved).

• For each such struct, implement a method (with a meaningful name) that returns a struct repre-
senting the next state. Note that the transition from state (a) to state (b) might fail.

What are the advantages of using structs over an enum in this case?

• Implement a new method for the first struct, and an archive method for the last one. The archive
method returns a new struct, called Archive, which simply contains the amount of money moved.
Make your Archive serializable and deserilazable.

• Add an IBAN struct, that contains a bank account ID, represented as a String.

• Make every state contain the two IBANs of the transaction. Update your methods.

2 Your first iterator

Iterators are structs that implement a trait, Iterator. This trait requires you to implement a method next,
which returns an Option. At each iteration step, the next method is called. If the next method returns
Some, the iteration continues. If the next method returns None, the iteration stops.
Let’s start simple. Write an IntegerIterator struct that contains a single value of type i32. Implement the
Iterator trait so that the iteration never finishes and always returns the next integer (0, 1, 2, etc.). Use the
template below:

1Apparently, it means “Hit Point”, not “Health Point”. My life is a lie. . .



impl Iterator for IntegerIterator {

type Item = i32; // the Iterator trait requires us to provide the output type here

fn next(&mut self) -> Option<i32> { // the output type has to match Item

// your logic here: always return Some

}

}

Implement a new method. Now, you can do:

for i in IntegerIterator::new() {

// print it

// (use CTRL+C to stop the program)

}

Write another iterator, Range, that consists of a start, an end, and a step. Write a new method for the struct.
Implement Iterator so that the user can iterate from start to end with a step. Write a function range that
returns a Range, so that you can do:

for i in range(0, 15, 2) {

// ...

}

3 Lifetime

• Fix the compiler errors about the struct.

struct Book {

author: &str,

title: &str,

}

• Fix the compiler error by updating the function signature.

fn longest(x: &str, y: &str) -> &str {

if x.len() > y.len() {

x

} else {

y

}

}


	Modelling
	Your first iterator
	Lifetime

