Recap

What you know so far



Organize data with struct and enum

/// A pointer and a capacity
struct RawVec<T> {
ptr: NonNull<T>,

cap: usize,

/// A vector that can grow by pushing elements
in it.
pub struct Vec<T> {

buf: RawVec<T>,

len: usize,

enum Direction {
North,
East,
South,
West,

impl Direction {
fn to_string(&self)
match self {
Direction:
Direction:
Direction:

Direction:

-> String {

:North => String::from'North"),
:East => String::from'(East"),
:South => String::from'(South"),

:West => String::from'(West"),




Write trait and implement them

pub trait Summary {
fn summarize (&elf) -> String {

String::from (' (Read more...)")

struct BlogArticle {

text: String,

impl Summary for BlogArticle {
fn summarize (&self) -> String {
let chars = self.text.chars();
let mut sub: String = chars.into iter () .takel0) .collect();
sub.push str("...");

sub




Write generic functions

fn print summary(x: &mpl Summary) {

println!("{}", x.summarize());

fn print summary<T: Summary>(x: &T) {

println!("{}", x.summarize());

fn print summary<T>(x: &T)
where

T: Summary,

println!("{}", x.summarize());

fn print summary(x: &yn Summary)

println!("{}",

X.summarize());

{




Understand ownership

// takes ownership of the string
// (the string is deallocated when it goes out of scope)
pub fn print string(s: String) {

println!("{s}");

// borrows the string

// (the string is """given back""" at the end of the function)
pub fn print string(s: &String) {
println!("{s}");




Most of Rust can be derived from that

- Modelling state: enum + struct

- Error handling: enum + struct + genericity
- Lifetime annotation: ownership + genericity
- Iterators: trait + genericity

- Destructors: trait

- RAII: Destructors
- Builder: struct + genericity



Modelling state

How to prevent errors



Q: What could go wrong here ?

struct Person {
has cat: bool,

cats: Vec<Cat>




Q: What could go wrong here ?

struct Person {
has cat: bool,

cats: Vec<Cat>

Invalid state avoided

struct Person {

cats: Vec<Cat>,

impl Person {
pub fn has cats(&elf) -> bool {

!self.cats.is empty /()




Another example of invalid states

struct Cat {
is _sleeping: bool,
is eating: bool,
is playing: bool,

is _hungry: bool,




Let’s fix some invalid states

struct Cat {
is _sleeping: bool,
is eating: bool,
is playing: bool,

is _hungry: bool,

enum CatActivity {
Sleeping,
Eating,
Playing,

struct Cat {
activity: CatActivity,

is _hungry: bool,




Let’s fix all invalid states

struct Cat {
is _sleeping: bool,
is eating: bool,
is playing: bool,

is _hungry: bool,

enum CatActivity {
Sleeping,
Eating,
Playing,

struct Cat {
activity: CatActivity,

is _hungry: bool,

enum CatActivity {
Sleeping,
Eating,

Playing (bool),

struct Cat {

activity: CatActivity,

impl Cat {
pub fn is hungry(&self) -> bool {
match self.activity {
CatActivity::Playing (hungry)

_ => false,

=> hungry,




Let’'s make it more clear

enum CatActivity {
Sleeping,
Eating,
Playing (bool),

struct Cat {

activity: CatActivity,

impl Cat {
pub fn is hungry(&self) -> bool {
match self.activity {
CatActivity::Playing(is_hungry) => is_ hungry,

_ => false,

enum CatActivity {
Sleeping,
Eating,

Playing|{ is_hungry: bool },

struct Cat {

activity: CatActivity,

impl Cat {
pub fn is hungry (&self)

match self.activity {

-> bool {

CatActivity::Playingd

{is_hungry}

_ => false,

=> is hungry,




Error handling

How to handle errors you could not prevent



How C++/Python/etc. does it

Functions have:

- asingle entry point
- multiple return instructions

This makes the control flow of your function clear.

But you also have another, hidden control flow: exceptions.



Exceptions break your ability to reason about your code

std::mutex m; // if you call “lock’, you must call “unlock’

void function with lock() {
m.lock();
do stuff();

m.unlock () ;

}

This may have a bug if do_stuff raises an exception.
Why not simply return an error in case of an error ?



Introducing: Option and Resu

pub enum Option<T> {
/// No value.
None,
/// Some value of type T .
Some (T),

pub enum Result<T, E> {
/// Contains the success value
Ok (T),
/// Contains the error value

Err(E),




Let’s look at an Option

fn main () {
let x: Option<u32> = Some (5);
match x {

None => println! ("Nothing to see here"),

Some (value) => println! ("The option has the value {value}."),




Remember, Options are generic

struct PhoneNumber ({

// data, e.g. indicator

fn main () {
let call me = PhoneNumber { /* data */ };
// Option of my very own type
let call me maybe: Option<PhoneNumber> = Some(call me);
// 'expect' stops the program if call me maybe is None

let ring ring = call me maybe.expect{why don't you give me a call?';




Option: practical use

use std::collections: :HashSet;

fn get and do something(set: &HashSetx32>, key: u32)
let value opt: Option<&u32> = set.get (&key);
let value: &u32 = match value opt {
Some (actual value) => actual value,
None => {

return None;

i

// do something here

let value = *value +;

// return the new value

Some (value)

-> Option<u32> {




Option: practical use - without boilerplate

use std::collections: :HashSet;

fn get and do something(set: &HashSet«32>, key: u32) -> Option<u32> {
let value: &u32 = set.get(&key)?; // early return here

// do something here

let value = *value + 1;

// return the new value

Some (value)




Let's look at a Result

fn from vec to string uppercase(vec: Vecx8>) -> Result<String, FromUtf8Error> {

let my string res: Result<String, FromUtf8Error> =
let string = match my string res {

Ok(valid string) => valid string,

Err(utf8 error) => {

return Err(utf8 error);

i
Ok (string.to uppercase())

String::from utf8 (vec);




Let’s look at a Result - and remove the boilerplate

fn from vec to string uppercase(vec: Vecx8>) -> Result<String, FromUtf8Error> {

Ok(String::from utf8(vec)?.to uppercase())

// or
fn from vec to string uppercase(vec: Vec®8>) -> Result<String, FromUtf8Error> {

String::from utf8(vec) .map(lstring| string.to uppercase())




Lifetime annotation

“| fell for a local variable... but it was never meant to last.”



What is a lifetime ?

Types:
- describe what your data is
Generic over type:

- describe all possible types accepted by a function

Lifetime:
- describe when your data is
Lifetime annotation:

- describe a set of possible lifetime



Example of a lifetime annotation

struct Cat {
// data
}

struct Person | Does not compile...

cat: &Cat, // because cats can be shared

}




Example of a lifetime annotation

struct Cat {
// data

}

Tells the compiler a Person is

struct Person<'a> { . . i
invalid if its Cat goes out of

cat: &'a Cat, // because cats can be shared

] scope




Example of a lifetime annotation - with an impl block

struct Cat {
// data

struct Person<'a> {

cat: &'a Cat, // because cats can be shared

impl<'a> Person<'a> {
fn new(cat: &'a Cat) -> Person<'a> {

Person { cat }




Example of a lifetime annotation - with an impl block

struct Cat {
// data
}

struct Person<'a> {

cat: &'a Cat, // because cats can be shared

}

impl Person<' > {
fn new(cat: &Cat) -> Person {
Person { cat }

}

Lifetime can be deduced by
the compiler here



Example of a lifetime annotation - with an impl block

struct Cat {
// data

struct Person<'a> {

cat: &'a Cat, // because cats can be shared

impl Person<' > {
fn new(cat: &Cat) -> Person {

Person { cat }

pub fn main() {
let cat = Cat {};

let person = Person::new(&cat);
drop (cat) ;
drop (person); // compiler error




Destructors and RAIl



How would you write the drop function ?

https://doc.rust-lang.org/nightly/src/core/mem/mod.rs.htmI#935



https://doc.rust-lang.org/nightly/src/core/mem/mod.rs.html#935

Writing your own destructor

A destructor is a method that is run when the object goes out of scope.
In Python, it's a “magic method”.

In Rust, it's simply a trait!

impl Drop for Person<' > {
fn drop (&mut self) {
println!("ciao");

}




