Unsafe Rust

Desperate times call for desperate measures



You can find more here

https://doc.rust-lang.org/nomicon/intro.html

“THE KNOWLEDGE IS PROVIDED "AS I1S", WITHOUT WARRANTY OF ANY
KIND, [...] INCLUDING [...] UNLEASHING INDESCRIBABLE HORRORS”

“Should you wish a long and happy career of writing Rust programs, you should
turn back now and forget you ever saw this book.”


https://doc.rust-lang.org/nomicon/intro.html

Special things you can do in unsafe Rust

Dereference raw pointers

Call unsafe functions (including C functions, compiler intrinsics, ...)
Implement unsafe traits

Access or modify mutable statics

Access fields of unions



Say you want to access two parts of a vector

let mut x = [1, 2, 3];
let a = &mut x[0];

let b = &mut x[1];
println!("{} {}", a, b);




Say you want to access two parts of a vector

let mut x = [1, 2, 3]1; .
let a — smut x[0]; - — Forbidden (two mutable references)
let b = smut x[1]; — |

println!("{} {}", a, b):




Say you want to access two parts of a vector

let mut x = [1, 2, 31;

let a - smut x[0]; - — Forbidden (two mutable references)
let b = smut x[1]; — |
println!("{} {}", a, b):

But wait, | know the two referenced
locations are disjoint



Say you want to access two parts of a vector

let mut x = [1, 2, 31;

let a - smut x[0]; - — Forbidden (two mutable references)
let b = smut x[1]; — |
println!("{} {}", a, b):

But wait, | know the two referenced
locations are disjoint



Say you want to access two parts of a vector

use std::slice::from raw parts mut;

pub fn main() {
let mut v = [1, 2, 3];
let len = v.len();

let ptr = v.as mut ptr();
let mid = 1; // let's "cut" the vector at positon 1

// Safety:

// data is non-null, valid and properly aligned

// data points to ‘len’ consecutive properly initialized values

// The memory referenced by the returned slice is not accessed through any other
pointer

// The total size len * size of::<T>() of the slice is not larger than isize::MAX

// mid <= len

let (part_one, part two) = unsafe {

let mut x =

let a = &mut x[0];
let b = &mut x[1];

println!("{}

[11 2/

{rmy

317

2y

b);

(
from raw parts mut (ptr, mid),

from raw parts mut (ptr.add(mid), len - mid),

}i

// part_one and part two are "independant" now
let a = &mut part one[O0];

let b = &mut part twol[l];

println! ("{} {}", a, b);




Say you want to access two parts of a vector

use std::slice::from raw parts mut;

pub fn main() {
let mut v = [1, 2, 3];
let len = v.len();

let ptr = v.as mut ptr();
let mid = 1; // let's "cut" the vector at positon 1

// Safety:
// data is non-null, valid and properly aligned
// data points to ‘len’ consecutive properly initialized values
// The memory referenced by the returned slice is not accessed through any other
pointer
// The total size len * size of::<T>() of the slice is not larger than isize::MAX
// mid <= len
let (part_one, part two) = unsafe {
(
from raw parts mut (ptr, mid),

from raw parts mut (ptr.add(mid), len - mid),

}i

// part_one and part two are "independant" now
let a = &mut part one[O0];

let b = &mut part two[1l];

println! ("{} {}", a, b);

Has a safe implementation

pub fn main() {
let mut v = [1, 2, 31;
let mid = 1; // let's "cut" the vector at

positon 1

let (part_one, part two) =

v.split at mut (mid);

// part_one and part_two are "independant"
now

let a = &mut part onel[O0];

let b = &mut part twol1];

println! ("{} {}", a, b):




But wait, how can it be safe?

- unsafe block are safe under some precondition

- if a function cannot prove all precondition, you have to make the function
unsafe

- the preconditions left are moved to the function



Example of safe interface

fn split at mut unsafe<'a, T>(slice: &'amut [T], mid: usize) -> (&'amut [T], &'a mut [T]) |



Example of safe interface

fn split at mut unsafe<'a, T>(slice: &'amut [T], mid: usize) -> (&'amut [T], &'a mut [T]) {
let len = slice.len();
let ptr = slice.as mut ptr();
// Safety:

// ptr is non-null, valid and properly aligned
// ptr points to ‘len' consecutive properly initialized values
// The memory referenced by the returned slice is not accessed through any other pointer
// The total size len * size of::<T>() of the slice is not larger than isize::MAX
let (part one, part two) =unsafe {
(
from raw parts mut (ptr, mid),

from raw parts mut (ptr.add(mid), len - mid),

}i

(part _one, part two)



Example of safe interface

fn split at mut unsafe<'a, T>(slice: &'amut [T], mid: usize) -> (&'amut [T], &'a mut [T]) {
let len = slice.len();

let ptr = slice.as mut ptr();

// Safety:
// ptr is non-null, valid and properly aligned
// ptr points to ‘“len’ consecutive properly initialized values
// The memory referenced by the returned slice is not accessed through any other pointer
// The total size len * size of::<T>() of the slice is not larger than isize::MAX
let (part one, part two) =unsafe {

(

from raw parts mut (ptr, mid),

from raw parts mut (ptr.add(mid), len - mid),

}i

(part _one, part two)



Example of safe interface

fn split at mut unsafe<'a, T>(slice: &'amut [T], mid: usize) -> (&'amut [T], &'a mut [T]) {
let len = slice.len();
let ptr = slice.as mut ptr();
// Safety:

// ptr is non-null, wvalid and properly aligned
// mid <= len
// The memory referenced by the returned slice is not accessed through any other pointer
let (part one, part two) =unsafe {
(
from raw parts mut (ptr, mid),

from raw parts mut (ptr.add(mid), len - mid),

}i

(part one, part two)



Example of safe interface

// Safety:

// mid <= len

unsafe fn split at mut unsafe<'a, T>(slice: &'amut [T], mid: usize) -> (&'amut [T], &'a mut
let len = slice.len();

let ptr = slice.as mut ptr();

// Safety:
// ptr is non-null, valid and properly aligned
// The memory referenced by the returned slice is not accessed through any other pointer
let (part one, part two) =unsafe {
(
from raw parts mut (ptr, mid),

from raw parts mut (ptr.add(mid), len - mid),

ki
(part _one, part two)

[T])

{




Example of safe interface

fn split at mut safe<'a, T>(slice: &'a mut [T], mid: usize) -> (&'a mut [T], &'a mut [T]) {

assert! (mid <= slice.len()):;

// Safety:
// mid <= len
let (part _one, part two) = unsafe { split at mut unsafe(slice, mid) };

(part_one, part two)




Take home message

You should build safe abstractions
(i.e. safe functions calling unsafe ones)



