Algorithms in Genome Research Winter 2025/2026

Exercises

Number 6, Discussion: 2025-December-12

- 1. Given a list of peaks from a Tandem Mass Spectrum (MS/MS) for peptide de-novo sequencing, one important obstacle for recovering the peptide sequence is to assign peaks to the main ion types b and y (prefix and suffix strings of the peptide sequence, respectively).
 - If we know that only b-ions are present in the spectrum, then recovering the sequence becomes simple. Describe an algorithm to do so: Input are the parent mass W and an ordered list of prefix masses w_1, \ldots, w_k . (Some peaks may be missing, though.)
- 2. We modify the above problem such that there are "noise peaks" (of unknown origin) in the mass spectrum. Describe an algorithm that finds a peptide sequence maximizing the number of explained peaks. The algorithm should run in $O(k|\Sigma|)$ time where k is the number of peaks and Σ is the underlying alphabet of amino acids. Hint: Use dynamic programming.
- 3. Word puzzling:
 - How many different words can be built by using all the letters of the string $S = \mathtt{GL\ddot{U}HWEIN}$ exactly once? Compute the actual value.
 - How many different words can be built by using all the letters of the string S = TEELICHT exactly once? Note that all words need to have the same length and must use the letters the specified number of times: For ABA, there are three such words, AAB, ABA, BAA.
 - Try and find a general formula for the number of different words wordnum(S) that can be created from the letters of a string S. Hint: For $S = \mathtt{GL\ddot{U}HWEIN}$, the formula depends only on the length of S, but not for $S = \mathtt{TEELICHT}$ what else does it depend on?
- 4. Suppose that we do not know the order of characters in a string: For example, the strings AACCC, ACACC, ..., CCCAA are indistinguishable to us. We call such "strings without order" componers (denoted A₂C₃ for our example). The length of a componer is the length of the corresponding string (5 in our example).
 - Let $\Sigma = \{A, C, G, T\}$ be our alphabet, then there exist 4 componers of length 1 (A_1, C_1, G_1, T_1) and 10 componers of length 2 $(A_2, A_1C_1, A_1G_1, A_1T_1, C_2, C_1G_1, C_1T_1, G_2, G_1T_1, T_2)$. How many componers exist of lengths 3 and 4?
 - Derive a general formula for the number of componers of length n over an arbitrary alphabet Σ of size σ .