

Algorithms in Genome Research
Winter 2025/2026

Exercises

Number 10, Discussion: 2026-January-23

1. Using only basic data structures (lists, arrays), devise a linear time algorithm for computing the breakpoint distance $d_{BP}(\mathbb{A}, \mathbb{B})$, where \mathbb{A} and \mathbb{B} form a pair of canonical genomes that can contain multiple linear or circular chromosomes.
2. Write down all string representations for the following singular chromosomes.
 - $C_1 = [1\ 4\ \bar{5}\ \bar{2}\ 3]$
 - $C_2 = (1\ \bar{3}\ 2)$

Develop a general formula for the number of string representations of singular chromosomes.

3. Consider the following two canonical genomes:

$$\begin{aligned}\mathbb{A} &= \{ [3\ 4\ \bar{8}] \ [2\ 1\ 7\ 5\ 6] \ (11\ 12\ \bar{13}\ 9\ 10) \ [\bar{15}\ \bar{14}] \} \text{ and} \\ \mathbb{B} &= \{ [1\ 2\ 3\ 4\ 5] \ (6\ 7) \ [8\ 9\ 10\ 11\ 12\ 13\ 14\ 15] \}.\end{aligned}$$

- (a) Draw the relational graph of \mathbb{A} and \mathbb{B} .
- (b) What is the breakpoint distance between \mathbb{A} and \mathbb{B} ?
- (c) What is the SCJ distance between \mathbb{A} and \mathbb{B} ?
- (d) Explain the difference between the two distances (if any).

- 4. A theoretical lower bound for the SCJ distance with respect to the breakpoint distance is

$$d_{BP}(\mathbb{A}, \mathbb{B}) \leq d_{SCJ}(\mathbb{A}, \mathbb{B}).$$

- (a) Give an example of a pair of mutually distinct genomes showing that this bound is tight.
- (b) Determine a tight upper bound for the SCJ distance with respect to the breakpoint distance and explain your answer.

- 5. Consider the following two balanced genomes:

$$\begin{aligned}\mathbb{A} &= \{ [1\ 3\ 1\ 2\ 4\ 6\ 6\ 2\ \bar{6}\ 4\ 5] \} \text{ and} \\ \mathbb{B} &= \{ (2\ 1\ \bar{5}\ 6) \ [2\ 4\ 6\ 1\ \bar{4}\ \bar{3}\ 6] \}.\end{aligned}$$

- (a) How could the distance of balanced genomes be phrased in terms of the distance of canonical genomes?
- (b) Give the number of distinct pairs of canonical genomes that can be obtained by fixing a maximal matching of the genes of \mathbb{A} and \mathbb{B} .