Sequence Analysis 1

Lecture notes

Faculty of Technology, Bielefeld University

Winter 2025/26

Preface

The lecture notes at hand are a re-structured, partially re-written and extended version
of previous ones by Robert Giegerich, Stefan Kurtz, Enno Ohlebusch, Sven Rahmann and
myself, over the years supported by several helping hands: Eyla Willing, Peter Husemann,
Roland Wittler, Katharina Klerx, Linda Sundermann, Karsten Wiillems, Tizian Schulz,
Michel T. Henrichs, Daniel Dorr, Marilia D. V. Braga and Leonard Bohnenkadmper.

This is the first of two parts, after the former “Sequence Analysis” class was split in the
acacdemic year 2025/26 into two (maybe three) smaller study modules. It should be, to
some degree, suitable for self study.

Jens Stoye, September 2025

Contents

Overview

1.1 Prerequisites e
1.2 Application Areas of Sequence Analysis
1.3 A Small Selection of Problems on Sequences
1.4 Selection of topics
1.5 Suggested Reading

Basic Definitions

2.1 Sets and Basic Combinatorics oo
2.2 Asymptotics
2.3 Graph Theory e
2.4 Alphabets and Sequences L
2.5 Maximality and minimality o oo
2.6 Review of Elementary Probability Theory

Distances Between Sequences

3.1 Problem Motivation
3.2 Definition of a Metric
3.3 Transformation Distances,
3.4 A Very Simple Metric on Sequences of the Same Length
3.5 Edit Distances for Sequences oL

Pairwise Sequence Alighment

4.1 Definition of Alignment
4.2 An Efficient Algorithm to Compute Optimal Alignments
4.3 The Alignment Score

Variations of Pairwise Sequence Alignment

51 Global Alignment L
5.2 Semi-global alignment oo
5.3 Free end gap alignment Lo
5.4 Local alignment
5.5 Gap Cost Variations for Alignments

Pairwise Alignment in Practice

6.1 Alignment Visualization with Dot Plots

6.2 Fundamentals of Rapid Database Search Methods

6.3 Alignment Statistics
6.3.1 Preliminaries
6.3.2 Statistics of ¢g-gram Matches and FASTA Scores

17
17
17
18
19
19

23
23
24
28

31
32
32
33
34
35

iii

Contents

6.3.3 Statistics of Local Alignments
6.4 BLAST: A fast Database Search Method
6.5 DIAMOND

Multiple Sequence Alignment

7.1 Basic Definitions
7.2 Why multiple sequence comparison?
7.3 Sum-of-Pairs Alignment
7.4 Multiple Sequence Alignment Problem
7.5 An Exact Algorithm
7.6 A Guide to Multiple Sequence Alignment Algorithms

Tree Alignment and Progressive Alignment

8.1 Definition of Tree Alignment,

8.2 Solving the Tree Alignment Problem
8.2.1 Fitch’s Algorithm L
8.2.2 Sankoff’s Algorithm

8.3 Generalized Tree Alignment L Lo

8.4 Progressive Alignmento L
8.4.1 Aligning Two Alignments

8.5 Software for Progressive Alignment
8.5.1 The Family of Clustal Programs
8.5.2 T-COFFEE
8.5.3 MUSCLE

Genome Assembly

9.1 Overlap, Layout, Consensus
9.2 Assembly Using de Bruijn Graphs
9.3 Hybrid Assembly

10 Suffix Trees

10.1 Motivation
10.2 An Informal Introduction to Suffix Trees
10.3 A Formal Introduction to Suffix Trees
10.4 Space requirements of Suffix Trees
10.5 Suffix Tree Construction: The WOTD Algorithm

11 Suffix Tree Applications

11.1 Exact String Matching
11.2 Minimum Unique Substrings
11.3 Maximal Repeat-Pairs oo
11.4 Maximal Unique Matches

12 Suffix Arrays

v

12.1 Motivation L e
12.2 Basic Definitionso
12.3 Suffix Array Construction Algorithms

12.3.1 Linear-Time Construction using a Suffix Tree

49
49
50
52
53
o4
55

57
o7
59
59
60
61
62
63
65
65
66
66

69
69
70
71

73
73
74
75
7
78

81
81
83
84
88

Contents

12.3.2 Direct Construction 93

12.3.3 Construction of the rank and lcp Arrays 95

12.4 Applications of Suffix Arrays 97

13 Burrows-Wheeler Transformation 99
13.1 Introduction 99
13.2 Transformation and Retransformation 99
13.3 Exact String Matching L o 101
13.4 Other Applications e 103
13.4.1 Compression with Run-Length Encoding 103

13.4.2 Matching Statistics 104

14 Using the BWT Efficiently 105
14.1 The FM-Index e 105
14.2 The r-Index e 106
14.3 The MOVE datastructure 106

15 Whole Genome Alignment 109
15.1 Seed Detection 109
15.2 Chaining oL 110
15.3 Collinear Multiple Genome Alignment (MUMmer) 111
15.4 Multiple Genome Alignment with Rearrangements (MAUVE) 111
Bibliography 113

1 Overview

At Bielefeld University, elements of sequence analysis are taught in several courses, starting
with elementary pattern matching methods in “Algorithms and Data Structures” in the
second semester. The present two-hour course “Sequence Analysis 1”7 is taught in the third
semester and is continued by “Sequence Analysis 2” in the fourth semester. Occasionally,
also a continuation “Sequence Analysis 3” is taught, covering extra fun and experimental
material.

1.1 Prerequisites

It is assumed that the student has had some exposure to algorithms and mathematics, as
well as to elementary facts of molecular biology. The following topics are useful, although
not absolutely required, to understand the material here:

e exact string matching algorithms (e.g. the naive algorithm, Boyer-Moore, Boyer-
Moore-Horspool, Knuth-Morris-Pratt),

e comparison-based sorting (e.g. insertion sort, mergesort, heapsort, quicksort),
e asymptotic complexity analysis (O notation).

The first two do not appear in these notes. Asymptotic complexity is briefly reviewed in
Section 2.2.

1.2 Application Areas of Sequence Analysis

Sequences (or texts, strings, words, etc.) over a finite alphabet are a natural way to encode
information. The following incomplete list presents some application areas of sequences
of different kinds.

e Molecular biology (the focus of this course):

Molecule ‘ Example Alphabet Length

DNA ...AACGACGT... 4 nucleotides = 103-10”
RNA ...AUCGGCUU... 4 nucleotides =~ 10?-103
Proteins | ...LISAISTNETT... 20 amino acids =~ 102-103

The main idea behind biological sequence comparison is that an evolutionary rela-
tionship implies structural and functional similarity, which again implies sequence
similarity.

1 Overview

Phonetics:

English: 40 phonemes
Japanese: 113 “morae” (syllables)

Audio files of spoken language, bird song, etc.: discrete multidimensional data (e.g.
frequency, energy) over time

Graphics: An image is a two-dimensional “sequence” of (r, g, b)-vectors with r, g,b €
[0,255] to encode color intensities for red, green and blue, of a screen pixel.

Text processing: Texts are encoded (ASCII, Unicode) sequences of numbers.

Information transmission: A sender sends binary digits (bits) over a (possibly noisy)
channel to a receiver.

Internet, web pages, any database of text or pseudo-textual information.

1.3 A Small Selection of Problems on Sequences

The

“Inform” in (bio-)informatics comes from information. Google states that their mis-

sion is “to organize the world’s information and make it universally accessible and useful”!.
Information is often stored and addressed sequentially. Therefore, to process information,
we need to be able to process sequences. Here is a small selection of problems on sequences,
although not all of them will be covered in this basic course.

1.

8.

Sequence comparison: Quantify the (dis-)similarity between two or more sequences
and point out where they are particularly similar or different.

. Exact string matching: Find all positions in a sequence (called the text) where

another sequence (the pattern) occurs.

. Approximate string matching: As exact string matching, but allow some differences

between the pattern and its occurrence in the text.

Multiple (approximate) string matching: As above, but locate all positions where
any pattern of a given pattern set occurs. Often more elegant and efficient methods
are available than searching for each pattern separately.

. Regular expression matching: Find all positions in a text that match an expression

constructed according to specific rules.

. Approximate dictionary search: Given a word w, find the most similar word to w in

a given set of words (the dictionary). This is useful for correcting spelling errors.

Repeat discovery: Find long repeated parts of a sequence. This is useful for data
compression, but also in genome analysis.

Data compression: Reduce the amount of memory used to store some text data set.

"https://about.google/company-info

9.

10.

11.

1.4

1.4 Selection of topics

Pattern discovery: Find all interesting parts of a sequence (this of course depends
on your definition of interesting); this may concern surprisingly frequent subwords,
tandem repeats, palindromes, unique subwords, etc.

Revision and change tracking: Compare different versions of a document, highlight
their changes, produce a “patch” that succinctly encodes commands that transform
one version into another. Version control systems like Subversion or Git are based
on efficient algorithms for such tasks.

Error-correcting and re-synchronizing codes: During information transmission, the
channel may be noisy, i.e., some of the bits may be changed, or sender and receiver
may get out of sync. Therefore error-correcting and synchronizing codes for bit
sequences have been developed. Problems are the development of new codes, and
efficient encoding and decoding algorithms.

Selection of topics

The material selected for this two-hour course covers only parts of the above-mentioned
topics. The expectation is that after this course the basic and most relevant problems
in sequence analysis are understood, especially if the focus is on applications in bioinfor-
matics. The continuation “Sequence Analysis 2”7 will cover additional topics, and deepen
some of those that we can not cover here in full detail.

Some even more advanced material will still be left over, and might be discussed in a
“Sequence Analysis 3”7 class, if there is interest. These include:

1.5

index construction in linear time

fast algorithms for approximate string matching (e.g. bit-shifting),

advanced filtering methods for approximate string matching (e.g. gapped g-grams),
efficient methods for advanced score functions in pairwise alignment,

combinatorics on sequences.

Suggested Reading

Details about the recommended textbooks can be found in the bibliography. We suggest
that students take note of the following ones.

Gusfield (1997) published one of the first textbooks on sequence analysis. Nowa-
days, some of the algorithms described therein have been replaced by better and
simpler ones. A revised edition would be very much appreciated, but it is still the
fundamental reference for sequence analysis courses.

Setubal and Meidanis (1997) give a good compilation of well explained sequence
analysis algorithms in computational biology, among other topics.

1 Overview

e Another good sequence analysis book that places more emphasis on probabilistic
models was written by Durbin et al. (1998).

e An even more mathematical style can be found in the book by Waterman et al.
(2005).

e A more textual and less formal approach to sequence analysis is presented by Mount
(2004). This book covers a lot of ground in bioinformatics and is a useful companion
until the Master’s degree.

e For the practically inclined who want to learn about the actual tools that implement
some of the algorithms discussed in this course, the above book or the “Dummies”
book by Claverie and Notredame (2007) is recommended.

e Finally, the classic algorithms textbook of Cormen et al. (2001) should be part of
every computer science student’s personal library. While it does not cover much of
sequence analysis, it is a useful reference to look up elementary data structures, O
notation, basic probability theory. It also contains a chapter on dynamic program-
ming.

2 Basic Definitions

2.1 Sets and Basic Combinatorics

Sets of numbers. The following commonly known sets of numbers are of special interest
for the topics taught in this course.

e N:={1,2,3,...} is the set of natural numbers.

e Ny := {0} UN additionally includes zero.

o 7:=40,1,—1,2,-2,3,-3,...} is the set of integers.
e R (RJ) is the set of (nonnegative) real numbers.

The absolute value or modulus of a number z is its distance from the origin and denoted
by |al, e.g. |-5| = [5| = 5.

An interval is a set of consecutive numbers and written as follows:
e [a,b] :={z €R:a <z <b} (closed interval),
e [a,b] :={zx € R:a <z <b} (half-open interval),
o J]a,b] :={z € R:a <z <b} (half-open interval),
e Ja,b[:={x € R:a <z < b} (open interval).

Sometimes the interval notation is used for integers, too, especially when we talk about
indices. So, for a,b € Z, [a,b] may also mean the integer set {a,a+1,...,b— 1,b}.

Elementary set combinatorics. Let S be any set. Then |S| denotes the cardinality of
S, i.e., the number of elements contained in S. We symbolically write |S| := oo if the
number of elements is not a finite number.

With P(S) or 2° we denote the power set of S, i.e., the set of all subsets of S. For each
element of S, there are two choices if a subset is formed: it can be included or not. Thus
the number of different subsets is |P(S)| = |2°] = 2/51.

To more specifically compute the number of k-element subsets of an n-element set, we
introduce the following notation:

e n":=n- ... -n (ordinary power, k factors),

enl:=n-(n—-1)-(n—2)----- 2 -1 (factorial).

2 Basic Definitions

When choosing k elements out of n, we have n choices for the first element, n — 1 choices
for the second one, and so on. To disregard the order among these k elements, we divide
by the number of possible rearrangements or permutations of k£ elements; by the same
argument as above these are k! many. It follows that there are n-(n—1)- ... -(n—k+1)/k!
different k-element subsets of an n-element set. This motivates the following definition of
a binomial coefficient:

. (Z) — n-(n—1)- .I.<;!~(Tb—k+1) — (n_T]Lg!)[.k! (read as “n choose k”).

2.2 Asymptotics

We will analyze several algorithms during this course. In order to formalize statements
such as “the running time increases quadratically with the sequence length”, we review
the asymptotic “big-O notation” here, also known as Landau symbols.

Let f,g: N —]R(J)r be functions.

O(-): We write f(n) € O(g(n)) (or f(n) = O(g(n)), even though this is not an equality)
if there exist ng € N and ¢ > 0 such that f(n) < c-g(n) for all n > ng (i.e., for
eventually all n). In fact, O(f(n)) stands for the whole class of functions that
grow at most as fast as f(n), apart from constant factors and smaller order terms.

A function in O(n¢) for some constant ¢ € N is said to be of polynomial growth; it does
not need to be a polynomial itself, e.g. n?5 4+ loglogn. A function in O(c") for constants
¢ > 1 is said to be of exponential growth.

It is suggested to remember the following hierarchy of O(-)-classes and extend it as needed.

O(1) € O(logn) C O(y/n) C O(n/logn) C O(n) C O(nlogn) C O(ny/n) C O(n?)
C O(n?) C O(n'8™) Cc O(2™) € O(3") € O(n!) C O(n™)

2.3 Graph Theory

Graphs and networks have an important role in many different areas, such as sequence
analysis and bioinformatics in general. Metabolic networks and phylogenetic trees are just
two examples and there are many more outside of this field, like electronic circuits and
transport or communication networks. Some basics of graph theory will be introduced in
this section.

A graph is a pair G = (V, E) consisting of a set of vertices V and a set of edges E. The
definitions of V' and E vary and depend on the type of graph they build. In the following,
the most basic graph types and some associated important definitions will be explained.

2.3 Graph Theory

Undirected graph. Here V can be any set and E C (‘2/) The set (‘2/) refers to all subsets!
of size two of V, i.e., all {u,v}, where u,v € V and u # v. If e = {u,v} € F is an edge
connecting vertices u and v, then e is said to be incident to v and to v, and the vertices
u and v are said to be adjacent. The degree of a vertex v is the number of edges that
are incident to v. A path is a sequence of n vertices (v1,...,v,), where v; and v;y; are
adjacent, for alli=1,...,n— 1.

Representing edges as sets implies that there is no order applied — in contrast to tuples,
which are used in the following paragraph.

Directed graph. Here V can be any set and E C V x V. A directed graph is also called
a digraph. In directed graphs, an edge (u,v) is interpreted as a link? from vertex u to
vertex v. This relation is often written as v — v. Furthermore, u can be referred to as
the source and v can be referred to as the target of the edge (u,v). For a directed graph
one distinguishes the in-degree and the out-degree of a vertex v, which determines the
number of incoming and outgoing edges, i.e., edges that have v as target or as source,
respectively. A vertex in a directed graph is balanced if its in-degree equals its out-degree.
A directed path is a path (vy,...,v,), where v; is linked to v;4; by an edge v; — v;11,
foralli=1,...,n—1.

More about paths and cycles. Given a path p = (vi,v2,...,v,), its length is denoted
by ¢(p) and corresponds to the number of edges along its way. Clearly we have ¢(p) = n—1.
The path p is simple if all vertices except possibly the first and the last one are distinct.
If the first and the last vertices are the same, we call p a cycle. A graph that contains at
least one cycle is called cyclic, otherwise it is called acyclic.

Connectivity. Two vertices v and v are connected if there exists a path p that starts
in v and ends in v. An undirected graph G = (V, E) is connected if every two vertices
u,v € V are connected, otherwise it is disconnected. A directed graph G = (V, E) is
weakly connected or simply connected if its underlying undirected variant is connected,
otherwise it is disconnected. And it is strongly connected if for every two vertices {u, v}
there exist a directed path from u to v and another directed path from v to u.

Examples of undirected and directed graphs are given in Figure 2.1.

Eulerian path. An Eulerian path in a graph G = (V| E) is a path that uses every edge
in E exactly once. Note that an Eulerian path is not necessarily simple and can visit each
vertex multiple times. Its first vertex is called initial vertex or source and its last vertex
is called final vertex or sink. If source and sink are the same vertex we have a so called
Eulerian cycle.

!This definition of E for an undirected graph G forbids parallel edges (connecting the same pair of
vertices) and loops (connecting a vertex to itself), implying that G is a simple graph.

2This definition of E for a digraph forbids parallel edges (linking the same pair of vertices in the same
order), but allows loops (linking a vertex to itself). If necessary, an additional restriction forbidding
loops can be assumed.

2 Basic Definitions

in- t- balan-
v Vs in ou
3 node degree node degree degree ced?
V1 1
v vs 9 v, V1 0 1 no
1 v v 9) 1 1 yes
2 v3 1 V2 v3 1 1 yes
4 v4 1 0 no
V4 V4

(a) An undirected graph. (b) A directed graph.

Figure 2.1: Examples of directed and undirected graphs.

A fundamental theorem of graph theory says that an Eulerian path exists in a connected
graph G if and only if G is balanced as we describe below.

A connected undirected graph is balanced if one of the two following conditions is true:

C1. All except two vertices have even degree. In this case, we assign arbitrarily one of
the two vertices of odd degree to be the source, and the other one to be the sink.

C2. All vertices have even degree. In this case, source and sink must be the same vertex,
and it can be chosen arbitrarily.

For a connected directed graph, the two possible conditions for being balanced are:

C1. All except two vertices are balanced. One of the unbalanced vertices must be the
source and has exactly one more outgoing edge than incoming edges. The other
unbalanced vertex must be the sink and has exactly one more incoming edge than
outgoing edges.

C2. All vertices are balanced. In this case, source and sink must be the same vertex, and
it can be chosen arbitrarily.

Hamiltonian path. A Hamiltonian path in a graph G = (E,V) is a path that visits
each vertex in V exactly once. If the start vertex and the end vertex of a Hamiltonian
path are adjacent, then by adding that connecting edge one gets a Hamiltonian cycle, i.e. a
cycle in G that visits each vertex. The problem of deciding whether a given graph contains
a Hamiltonian cycle or not is a very prominent task in graph theory and computer science
in general.

Trees. An unrooted tree is a connected, acyclic, undirected graph. Each vertex with a
degree of one is called a leaf (terminal node). All other nodes are called internal nodes.
An unrooted tree can be either binary, when its nodes have degree at most three, or
multifurcating otherwise.

In a rooted tree one of the vertices is distinguished from the others and is called the root.
Rooting a tree induces a hierarchical relationship of the nodes and creates a directed graph,
since rooting implies a direction for each edge (by definition always pointing away from
the root). The terms parent, child, sibling, ancestor, descendant are then defined in
the obvious way. Rooting a tree also changes the notion of the degree of a node. First

2.3 Graph Theory

Vi
Vi

Va

v Vs v, v,
Vs V3 Vs
Ve vy
A A A Ve vy Vg Vs V3 Vg Vg Vs
(a) unrooted and binary (b) unrooted and (c) rooted and binary (d) rooted and
multifurcating multifurcating

Figure 2.2: Trees of four different types.

note that the root has in-degree zero and every other node has in-degree one. Only the
out-degree of the nodes may vary, therefore the degree of a node in a rooted tree
refers to the out-degree of that node. Then, a leaf is defined as a node of (out-)degree
zero. A rooted tree can be either binary, when its nodes have (out-)degree at most two,
or multifurcating otherwise. The depth of node v in a rooted tree, denoted depth(v), is
the length of the (unique) simple path from the root to v. The depth of a rooted tree
T is the maximum depth of all of T’s nodes. The width of a certain depth d of a rooted
tree is the number of nodes in T whose depth is d. The width of a rooted tree T is the
maximum width among all depths.

The removal of any edge divides (splits) a tree into two connected components. Given a
node v other than the root in a rooted tree, the subtree rooted at v is the remaining
tree after removing the edge that ends at v and the component containing the root. (The
subtree rooted at the root is the complete, original tree.)

Examples of trees are given in Figure 2.2.

Bipartite graph. In this graph, that is often represented as G = (U UV, E), the vertices
are partitioned into two disjoint sets U and V, also called partitions. There exist only
edges between vertices of different partitions, i.e., no edge connects a pair of vertices
belonging to the same partition. More formally this means that, for all e € E, it holds
that |eNU| = |eNn V| =1. An example of a bipartite graph is shown in Figure 2.3 (a).

Multigraph. This type of graph has parallel edges, connecting the same pair of vertices.
In directed multigraphs, parallel edges have the same direction (link the same source to
the same target). An example of a multigraph is shown in Figure 2.3 (b).

Hypergraph. In this type of graph an edge can connect any number of vertices instead
of just two. Such edges are called hyperedges. An example of a hypergraph is shown in
Figure 2.3 (c).

Weights. Graphs can be enhanced with weights. They can be vertex-weighted, edge-
weighted or both. Weights are specified by a weighting function Wy : V. — R or Wg :
E — R, respectively. Weights can be used to symbolize many different numerical or
even ordinal relationships. In case of vertices, this could be a minimum score to access

2 Basic Definitions

V3

Va

Y%
A ‘Q®
\Z!

[
® o

Va

Vi

V3

(a) A Dbipartite graph has (b) A directed multigraph. (¢) A hypergraph whose hyperedges

its vertices partitioned into ~ Two parallel edges (point- are e; and e2. The hyperedge e;
two sets U and V. ing in the same direction) contains the vertices v1, v2 and wvs,
link vertices v to vs. while hyperedge ez contains v2 and

V4.

Figure 2.3: Graphs of three different special types.

the corresponding vertex. For edges, it could stand for a cost or path length to travel
from one vertex to another. For an edge-weighted graph, we denote by w(p) the weight
(or length) of a path p = (v1,v9,...,v,), defined as the sum of its edge weights, i.e.,
w(p) = Z?:_ll Wg (vi, Ui+1). For example, the famous Traveling Salesperson Problem
(TSP) asks in an edge-weighted graph for a shortest (lowest-weight) Hamiltonian cycle (if
it exists).

Labels. In a labeled graph vertices and/or edges are annotated with different kinds of
labels. One example of a labeled graph is the suffiz tree, which will be part of this lecture
(see Chapter 10).

Representation. There are mainly three different forms to represent a graph G = (V) E).
The edge list is a list of all edges within G. The adjacency matriz is a |V| x |V| matrix
with entries indicating whether an edge exists between any pair of vertices or not. For
an unweighted graph, this matrix is binary. If the graph is weighted, the entries in the
matrix usually represent the weights of the corresponding edges. Adjacency lists are used
to store, for each vertex in V', a list of their adjacent vertices. See Figure 2.4 for examples.

2.4 Alphabets and Sequences

Alphabets. A finite alphabet is simply a finite set; we use ¥ as the symbol for an
alphabet. The elements of 3 are called characters, letters, or symbols. Here are some
examples:

e the DNA alphabet {A,C,G,T} (adenine, cytosine, guanine, thymine);

e the puRine / pYrimidine alphabet for DNA {R,Y} (R=Aor G;Y =T or C);

10

2.4 Alphabets and Sequences
V3

Vi
Va2

v, [(v1,02), (v2,v3), (v3,04)]

(a) Example of a graph G. (b) Example of an edge list for G. The structure

of G is represented as one list of all its edges.

| vi v w3z

vi | 0 1 0 0 vi: o U2

V2 1 0 1 0 vy Vi, U3

V3 0 1 0 1 V3. U2, V4

ve | O 0 1 0 V4 U3
(c) Example of a binary adjacency matrix for G. (d) Example of adjacency lists for G. For each
As @ has four vertices, the matrix size is 4 x 4. vertex in G there is a list that contains all vertices
Each 1 represents an edge between the correspond- that are adjacent to it.

ing vertices in G.

Figure 2.4: An undirected graph and three common forms of its representation.

e the amino acid one-letter code {A,...,Y}\{B,J,0,U,X}, see http://en.wikipedia.
org/wiki/List_of_standard_amino_acids for more information about the indi-
vidual amino acids;

e the HydrophObe / hydroPhIle alphabet {H,P} or {0,I};
e the positive / negative charge alphabet {+,-};

e the IUPAC codes for DNA sequences ({A,C,G,T,U,R,Y,M,K,W,S,B,D,H,V,N}) and
for protein sequences ({A,...,Z}\{J,0,U}), see http://www.bioinformatics.org/
sms/iupac.html;

e the ASCII (American Standard Code for Information Interchange) alphabet, a 7-
bit encoding (0-127) of commonly used characters in computer systems (see http:
//en.wikipedia.org/wiki/ASCII);

e the alphanumeric subset of the ASCII alphabet {0,...,9,A,...,Z,a,...,z}; encoded
by the numbers 48-57, 65-90 and 97-122, respectively.

These examples show that alphabets may have very different sizes. The alphabet size
o := |X| is often an important parameter when we analyze the complexity of algorithms
on sequences.

Sequences. A sequence (also called string or word) s over an alphabet ¥ is represented
as s = s[1]s[2]...s[n] = (s[1],s[2],..., s[n]), where, for i = 1,...,n, each symbol s[i] € X.
The number of symbols in the sequence s, which here corresponds to n, is the length
of s, and can be directly denoted by |s|. We denote by ‘s the reversal of s, that is
obtained by reverting the order of its symbols: ‘s = s[n]s[n — 1]...s[1]. The empty
sequence, denoted by ¢, consists of no symbols and has length 0. By the concatenation

11

2 Basic Definitions

(or juxtaposition) of two or more sequences we can obtain a longer sequence, whose
length is the sum of the lengths of the concatenated sequences.

Let X" be the set of all sequences whose length is n and consist of symbols from Y. Note?
that X% = {e} for any alphabet ¥. For n > 1 we can write ¥" = {za | z € ¥"7! a € X}.
We further denote by ¥* (resp. 1) the set of all (resp. all nonempty) sequences over X:

E*:UE” and z+:Uz".

n>0 n>1

Substrings. Let a sequence s be written as a concatenation s = wvw. Each of the
(possibly empty) sequences u, v and w is a substring (or subword) of s. Furthermore,
the substring u is a prefix of s and the substring w is a suffix of s. A substring of s
that is distinct from s is said to be proper?. If we can write s = wv and s’ = vw with
u,v,w € ¥*, then we say that s and s’ have an overlap of length |v|. Note that there
always exists an overlap of length 0 between any pair of sequences.

The substring from position ¢ to position j of s is denoted by s[i...j] = s[i|s[i +1]...s[j],
assuming that i < j. If ¢ > j, by convention we define s[i...j] = . We say that a
substring w occurs at position ¢ in s if si. .. j] = w (in this case, obviously j = i+|w|—1).

Given a sequence s and an integer k, with 0 < k < |s|, a k-mer or k-gram® of s is a
substring of s of length k. Note that at each of the positions from the set {1,2,...,|s| —
k + 1} there is an occurrence of a k-mer in s.

Subsequences. While a substring is a contiguous part of a sequence, a subsequence does
not need to be contiguous: Given a sequence s and m positions 41,2, ...,%n, such that
1 <ip <ig < -+ <ipy < |s|, the sequence s[i1,2,...,0in| = s[i1]s[iz] ... s[in] is called a
subsequence of s.

Each substring is also a subsequence, but the converse is not generally true. For exam-
ple, ABB is both a subsequence and a substring (even a prefix) of ABBAB, while BBB is a
subsequence but not a substring.

Counting substrings and subsequences. Let s be a sequence with |s| = n. A nonempty
substring of s is specified by its starting position ¢ and ending position j with 1 <i < j < n.
This gives n— k+ 1 substrings of length k occurring in s. In total the number of nonempty
substrings occurring in sis 1+2+---+n = (ngl) = (n+1)-n/2. We might further argue
that the empty substring occurs n + 1 times in s (before the first character and after each
of the n characters), so including the empty strings, there are (”;ﬂ) ways of selecting a

substring.

359 is the unitary set consisting of the empty sequence (not the empty set, nor the empty sequence itself).

1A proper substring that is also a prefiz (resp. suffiz) is a proper prefiz (resp. proper suffiz).

®The term “gram” is probably related to the Greek word ypdupuc (gramma), meaning letter. Usually
the literature that adopts the term “gram” denotes its size by ¢ (g-gram) instead of k (k-mer).

12

2.4 Alphabets and Sequences

A (possibly empty) subsequence of s is specified by any selection of positions. Thus there
are 2" possibilities to specify a subsequence, which is exponential in n. There are (Z)
possibilities to specify a subsequence of length k.

In both of the above cases, the substrings or subsequences obtained by different selections
do not need to be different. For example if s = AAA, then s[1...2] = s[2...3] = AA. Ttisan
interesting problem (for which this course will provide efficient methods) to compute the
number of distinct substrings or subsequences of a given sequence s. In order to appreciate
these efficient methods, the reader is invited to think about algorithms for solving these
problems before continuing!

Words with the same g-gram profile and the de Bruijn subgraph. Given a sequence
s and a positive integer ¢ < |s|, we want to determine whether there are other sequences
that are distinct but have the same g-gram profile as s. And, if there are, how many? For
q = 1, the problem is trivial. Indeed, if a sequence t that is distinct from s corresponds
to a permutation of the symbols of s, then s and t clearly share the same 1-gram profile.
For ¢ > 2, an elegant answer can be found with the help of the following graph.

Given a sequence s and a positive integer ¢, such that 2 < ¢ < |s|, the de Bruijn
subgraph B(s,q) = (V,E) is a directed multigraph. The set of vertices V is simply
composed of all (¢ — 1)-grams of s. The set of edges E is derived from the multiset of ¢-
grams of s as follows. Let ¢ be an integer iterated from 1 to |s| — ¢ + 1. For each i, let
the corresponding g-gram be denoted as sq; = s[i...i+ ¢ — 1] = aub, where a and b are
symbols and |u| = ¢ — 2; we then add an edge to E, linking vertex au to vertex ub. Note
that if the same g-gram occurs multiple times in s, say m times, we have m parallel edges
occurring in the multigraph B(s, q).

The construction of B(s, q) forms an Eulerian path ps, represented here by its sequence of
edges $4,1,5¢,2;- -+ 8q,|s|—q+1- Consequently, B(s,q) is connected and balanced and might
contain even more than one Eulerian path. In fact, there is a one-to-one correspondence
between Eulerian paths in B(s, ¢) and sequences sharing the same g-gram profile. In other
words, a sequence t that is distinct but has the same ¢-gram profile as s exists if and
only if B(s, q) has another Eulerian path p; corresponding to the sequence of ¢-grams of ¢.
Since p; uses the same edges as ps in a different order, the path p; can only exist if B(s, q)
contains a cycle. Note, however, that the presence of a cycle is not a sufficient condition.
Indeed, it is possible that B(s,q) contains one or more cycles, but still admits only one
Fulerian path. Some examples are given in Figures 2.5 and 2.6.

We summarize the observations above in the following theorem.

Theorem 1 Given a sequence s and an integer ¢ > 2, the number of distinct sequences
that have the same g-gram profile as s equals the number of distinct Eulerian paths in
B(s,q). If B(s,q) is acyclic, it has a single Eulerian path and no sequence ¢ exists that is
distinct but has the same g-gram profile as s.

13

2 Basic Definitions

TTA

GAT ACA

s = GATTACA and ¢ =4

(a) Since this graph contains
no cycle, it has only one Eu-
lerian path. There can be no
other word sharing the same
4-gram profile.

TTA

ATT TAC

GAT ACA

s = GATTATTACA and ¢ =4

(b) Here the graph contains
two cycles, but still only one
FEulerian path. There is no
other word sharing the same
4-gram profile.

AAT

GAT
§ = GATTATTAATTACA and ¢ =4

(c) This graph contains cy-
cles and two distinct Eulerian
paths. The other word shar-
ing the same 4-gram profile is
GATTAATTATTACA.

Figure 2.5: Examples of de Bruijn subgraphs for distinct sequences and ¢ = 4.

ATT TTG

GAT TGA

s = GATTGAT and ¢ =4

AT TT

GA TG

s = GATTGAT and ¢ = 3

(a) This graph has an Eulerian
cycle starting at any of its four
Therefore, three other
sequences share the same 4-gram
ATTGATT, TTGATTG and

vertices.

profile:

(b) This graph has two cy-
cles, but only one Eulerian
path.
word sharing the same 3-

There is no other

gram profile.

G

s = GATTGAT and ¢ = 2

(c) This graph contains cy-
cles and two distinct Eu-
The other
word sharing the same 2-
gram profile is GATGATT.

lerian paths.

TGATTGA.

Figure 2.6: De Bruijn subgraphs for the same sequence but with ¢ varying from 4 to 2.

2.5 Maximality and minimality

For identifying a maximum pattern in some object, it is often useful to first find maximal
candidates: these are the parts that fulfill the pattern and cannot be extended in any way.
The maximum fulfilling parts are then the largest among the maximal ones. For example,
consider the set of integers S = {1,4,5,6,8,9,11,13,14,15} and suppose we are searching
for subsets of at least two elements composed of consecutive values only. Here the list of
subsets fulfilling the search criteria is {4,5}, {4,5,6}, {5,6}, {8,9}, {13,14}, {13,14, 15},
{14, 15}. If we restrict to maximal subsets, we have {4,5,6}, {8,9}, {13,14,15}. And if
we finally restrict to mazimum subsets, we find the subsets {4,5,6}, {13, 14,15}.

Analogously, for identifying a minimum pattern in some object, it is often useful to first
find minimal candidates: these are the parts that fulfill the pattern and cannot be pruned
in any way. The minimum fulfilling parts are then the smallest among the minimal ones.
For example, consider the sequence s = ABABBA and suppose we are searching for its unique
substrings. These are the substrings of s that occur exactly once in s. Here the set of

14

2.6 Review of Elementary Probability Theory

unique substrings is U = {ABABBA, ABABB, ABAB, ABA, BABBA, BABB, BAB, ABBA, ABB, BBA, BB}.
If we then restrict to minimal unique substrings, we have U’ = {ABA,BAB,BB} (for any
other candidate z in the set U, at least one of the three elements of U’ is a substring of
x). And if we finally restrict to minimum unique substrings®, we have only BB.

2.6 Review of Elementary Probability Theory

A little understanding about probabilities is required to follow some of the subsequent
chapters. A probability vector is a (row) vector with nonnegative entries whose sum
equals 1. A matrix of several probability vectors on top of each other is called a stochastic
matrix (naturally, its rows sum to 1). Relative frequencies can often be interpreted as
probabilities.

Often, we will associate a probability or frequency with every letter in an alphabet ¥ =
{ai,...,as} by specifying a probability vector p = (p1,...,ps). fp1 =+ =p, = 1/0, we
speak of the uniform distribution on X. Letter frequencies allow us to define a notion
of random text or independent and identically distributed (i.i.d.) text, where
each letter ap appears according to its frequency pp at any text position, independently
of the other positions. Then, for a fized length ¢, the probability that a random word X
of length ¢ equals a given x = x1 ... 2, is

q
i=1

where k(c) is the index k of the letter ¢ such that ¢ = a; € ¥. In particular, for the

uniform distribution, we have that P(X = z) = 1/0? for all words x € 4.

How many times do we see a given word z of length g as a substring of a random text 71" of
length n + ¢ — 17 That depends on 7', of course; so we can only make a statement about
expected values and probabilities. At each starting position ¢ = 1,...,n, the probability
that the next ¢ letters equal z is given by p, := P(X = x) as computed above. Let us call
this a success. The expected number of successes is then n - p,.

But what is precisely the probability to have exactly k successes? This is a surprisingly
hard question, because successes at consecutive positions in the text are not independent:
If x starts at position 17, it cannot also start at position 18 (unless it is the g-fold repetition
of the same letter). However, if the word length is ¢ = 1 (i.e., = is a single letter), we
can make a stronger statement. Then the words starting at consecutive positions do not
overlap and successes become independent of each other. Each text with k successes (each
with probability p,) also has n — k non-successes (each with probability 1—p,). Therefore
each such text has probability p]; (1— px)”_k. There are (2) possibilities to choose the k
out of n positions where the successes occur. Therefore, if K denotes the random variable

counting successes, we have

P(K =k) = (Z) pE (1= py)E

An efficient solution for this particular problem does not require the enumeration of all candidates as
we did here and will be given in Chapter 11.

15

2 Basic Definitions

for k € {0,1,...,n}, and P(K = k) = 0 otherwise. This distribution is known as the
Binomial distribution with parameters n and p,. As said above, it specifies probabilities
for the number k of successes in n independent trials, where each success has the same
probability p,.

When n is very large and p is very small, but their product (the expected number of
successes) is np = A > 0, the above probability can be approximated by

e . \k

as a transition to the limit (n — oo, p — 0, np — \) shows. (You may try to prove this
as an exercise.) This distribution is called the Poisson distribution with parameter A
which is the expected value as well as the variance. It is often a good approximation when
we count the (random) number of certain rare events.

Example 2 Let s,t € ¥ and |X| = ¢. In the i.i.d. model, what is the probability that s
and ¢ contain a particular character a the same number of times?

The probability that a is contained k times in s is (Z) . (%)k (1 — %)n_k The same applies
to t. Thus the probability that both s and ¢ contain a exactly k times is the square of the

above expression. Since k is arbitrary between 0 and n, we have to sum the probabilities
. 1 1\n—k 2
over all k. Thus the answer is) ,_, ((Z) e (1-1)) . <

16

3 Distances Between Sequences

3.1 Problem Motivation

The trivial method to compare two sequences is to compare them character by character:
x and y are equal if and only if |z| = |y| and z; = y; for all i € [1, |z|]. However, many
problems are more subtle than simply deciding whether two sequences are equal or not.
Some examples are

e searching for a name of which the spelling is not exactly known,
e finding diffracted forms of a word,

e accounting for typing errors,

e tolerating error prone experimental measurements,

e allowing for redundancy in the genetic code, with 64 codons corresponding to 20
amino acids; for example, GCA, GCC, GCG and GCU (in short, GCN) all code for alanine,

e looking for a protein sequence with known biological function that is similar to a
given protein sequence with unknown function.

Therefore, we would like to define a notion of distance between sequences that takes the
value zero if and only if the sequences are equal and otherwise gives a quantification of
their differences. This quantity may depend very much on the application! The first step
is thus to compile some properties that every distance should satisfy.

3.2 Definition of a Metric

In mathematical terms, a distance function is often called a metric, but also simply
distance. Given any set X, a metric on X is a function d : X x X — R that assigns
a number (their distance) to any pair (z,y) of elements of X’ and satisfies the following
properties:

d(z,y) =0if and only if z = y (identity of indiscernibles) (3.1)
d(z,y) = d(y,x) for all z and y (symmetry)
d(z,y) <d(x,z) +d(z,y) for all z, y and z (triangle inequality) (3.3)

From (3.1)—(3.3), it follows that:

d(xz,y) > 0 for all z and y (nonnegativity) (3.4)

17

3 Distances Between Sequences

X Y
z X Y z
(a) Triangle inequality (b) Ultrametric triangle inequality

Figure 3.1: Illustrations of the triangle inequality and the ultrametric triangle inequality.

The pair (X, d) is called a metric space.

If only (3.2) and (3.3) hold and also d(x,z) = 0 for all x, but there are z # y with
d(z,y) = 0, we call d a pseudo-metric. A pseudo-metric on X can be turned into a true
metric on a different set X’, where each set of elements with distance zero from each other
is contracted into a single element.

While a pseudo-metric is somewhat weaker (more general) than a metric, there are also
more special variants of metrics. An interesting one is an ultra-metric which satisfies
(3.1) and (3.2), and the following stronger version of the triangle inequality:

d(z,y) < max{d(zx, z), d(z,y)} for all z, y and z (ultrametric triangle inequality)
It is particularly important in phylogenetics.

Figure 3.1 visually compares the triangle inequality (a) and the ultrametric triangle in-
equality (b).

3.3 Transformation Distances

A transformation distance d(z,y) on a set X is defined as the minimum number of
allowed operations needed to transform one element x into another y. The allowed oper-
ations characterize the distance.

The following can be said about the metric properties of an arbitrary transformation
distance: The identity of indiscernibles is often easy to verify. Care has to be taken that
the allowed operations imply the symmetry condition of the defined metric. The triangle
inequality is always satisfied since the distance is defined as the minimum number of
operations required. (Be sure to understand this!)

Depending on the set X and the allowed operations, a transformation distance may be
easy or hard to compute.

18

3.4 A Very Simple Metric on Sequences of the Same Length
3.4 A Very Simple Metric on Sequences of the Same Length

Take an alphabet ¥ and consider two sequences © = (z1,...,z,) and y = (y1,...,Yn),
both of length n, over X, i.e. z,y € ¥". The following function is a metric distance:

n

d(z,y) = Z Loy} (Hamming distance)
i=1

where the indicator function 1;.,,q) equals 1 if condition cond is true, and equals 0
otherwise.

Simply speaking, the Hamming distance counts in how many of their n positions the two
sequences x and y differ:

Example 3 Let ¥ = {A,C,G, T},

r = GATTTACAGTAGGTCC and
= GATTCACACTAGGTCA.

The two sequences differ in the three positions 5, 9 and 16 (underlined). Therefore, their
Hamming distance is dy(z,y) = 3. <

Example 4 Given is an alphabet ¥ of size o. Consider a graph whose vertices are all
strings in X", the so-called sequence graph of dimension n. Two vertices are connected by
an edge if and only if the Hamming Distance between them is 1. How many edges does
the graph contain?

There are exactly n(o — 1) strings at Hamming distance 1 of any given string (n positions
times (0 — 1) choices of differing characters). Thus there are n(c — 1) edges incident to
each vertex. Obviously there are o™ vertices. Since an edge is connected to two vertices,
there are 0™ - n - (0 — 1)/2 edges altogether. <

The distance measure introduced in this section only make sense for sequences of the same
length. The distances we consider next are also defined for sequences of different lengths.

3.5 Edit Distances for Sequences

Let X be a finite alphabet. Edit distances are a general class of transformation distances
on X*, defined by edit operations. The distance is defined as the minimum number of
edit operations needed to re-write a source sequence x € ¥* into a target sequence y € ¥*.

The edit operations that we consider are
e C: copy the next character from z to y,
e S, for each ¢ € 3: substitute the next character from = by ¢ in v,

e I.: insert c at the current position in y,

19

3 Distances Between Sequences

e D: delete the next character from z (i.e., skip over it),
The insert and delete operations are sometimes collectively called indel operations.

The following table lists some edit distances along with their operations and their associ-
ated unit costs. If a cost is infinite, the operation is not permitted.

Name c s I. D
Hamming distance dp 0 1 o0 o©
LCS distance drcs |0 oo 1 1
Edit distance! d 0o 1 1 1

Each distance definition must allow copying at zero cost to ensure d(z,x) = 0 for all x.
All other operations receive a non-negative cost. Here are some subtle points to note:

e Previously, the Hamming distance dp(x,y) was undefined if |x| # |y|. With this
definition, we could define it as co. This distinction is irrelevant in practice.

e The LCS distance (longest common subsequence distance) does not allow substitu-
tions. However, since each substitution can be simulated by one deletion and one
insertion, we don’t need to assign infinite cost. Any cost > 2 will lead to the same dis-
tance value. The name stems from the fact that dpog(z,y) = |z|+|y|—2- LCS(x,y),
where LC'S(z,y) denotes the length of a longest common subsequence of z and y.

e The edit distance should be more precisely called standard unit cost edit distance.
It is the most important one in practice and should be carefully remembered.

We can now explain a bit more formally how z € ¥* is transformed into a sequence y by
an edit sequence, i.e., a sequence over the edit alphabet £(X) := {C,S,, I.,D} (or an
appropriate subset of it, depending on which of the above distances we use): Let x € ¥*
and e € £(2)*. We define the edit function F : ¥* x £(X)* — ¥* as follows. For E(z,e),
the elements of e are applied from left to right to the letters of x, producing a new target
sequence y. At the end of the process, x must be exhausted, otherwise e does not fit to x.

Example 5 Let ¥ = {A,C,G,T} and x = GATTTTA. When applying the edit sequence
e = CCDCCS,IcC to x, we get the new sequence y = GATTACA, as can be verified easily. <

We define the cost of a sequence of edit operations as the sum of the costs of the indi-
vidual operations according to the table above. With this at hand we can define the edit
distance for a set of edit operations £ as

d(z,y) := min{cost(e) : e € £, E(x, e) = y}.

Theorem 6 Each of the three distance variations according to the table above (Hamming
distance, LCS distance, Edit distance) defines a metric.

!The (unit cost) edit distance is also called Levenshtein distance, see (Levenshtein, 1966).

20

3.5 Edit Distances for Sequences

Proof. We need to verify that all conditions of a metric are satisfied. The identity of
indiscernibles is easy. The triangle inequality is also trivial because the distance is a
transformation distance (see Section 3.3). We need to make sure that symmetry holds,
however. This can be seen by considering an optimal edit sequence e with E(z,e) = y.
We shall show that there exists an edit sequence f with cost(f) = cost(e) such that

To obtain f with the desired properties, we replace in e each D by an appropriate I. and
vice versa. Substitutions S, remain substitutions, but we need to replace the substituted
character from y by the correct character from x. A copy C remains a copy. The edit
sequence f constructed in this way obviously satisfies cost(f) = cost(e) and E(y, f) = x.
This shows that d(y, z) < d(z,y).

To prove equality, we apply the argument twice and obtain d(z,y) < d(y,z) < d(z,y).
Since the first and last term are equal, all inequalities must in fact be equalities, proving
the symmetry property. O

Invariance properties of the edit distance. We note that the edit distance is invariant
under sequence reversal and bijective maps of the alphabet (“renaming the symbols”):

Theorem 7 Let d denote any variant of the above edit distances; let 7 : ¥ — ¥/ be a
bijective map between alphabets (if ¥’ = X, then 7 is a permutation of 3). We extend 7 to
strings over ¥ by changing each symbol separately. Then, clearly d(x,y) = d(w(z), 7(y)).
Furthermore, d(z,y) = d(t,).

Proof. Left as an exercise. Hint: Consider reversibility of edit operations. g

This theorem immediately implies that two DNA sequences have the same edit distance
as their reverse complements.

21

4 Pairwise Sequence Alignment

4.1 Definition of Alignment

An edit sequence e € £* describes in detail how a sequence x can be transformed into
another sequence y, but it is hard to visualize the exact relationship between single char-
acters of x and y when looking at e. An equivalent description that is visually more useful
is an alignment of x and y.

We first give an example: Take z = AAB and e = IgCSpD; then E(x,e) = BAB =: y. Where
does the first B in y come from? It has been inserted, so it is not related to the first A in x.
The A in y is a copy of the first A from x. The last B in y has been created by substituting
the second A in x by B. Finally, the last B in x has no corresponding character in y, since
it was deleted. We write these relationships in the following way, called alignment.

- A A B
B A B -

We see that an alignment consists of (vertical) pairs of symbols from 3, representing
copies or substitutions, or pairs of a symbol from ¥ and a gap character (—), indicating
an insertion or deletion. Note that a pair of gap characters is not possible. Formally, the
alignment alphabet for ¥ is defined as

A=AE®) = EU D2\ {(0)}
and an alignment is a finite sequence over A.

More informally, an alignment can be seen as a matrix of characters from ¥ U {-} with
two rows and an arbitrary number of columns, where the column (Z) is forbidden. In
this matrix, for i € {1,2}, the ¢-th row equals the i-th sequence, if the included gaps
are omitted. Each column of the matrix (alignment) corresponds to one of the edit
operations. If one of the characters of a column is a gap character, it is called an indel
column. A column of the form (Z) for a € ¥ is called a match column (or copy column
if we want to stick to the edit sequence terminology). Consequently, a column of the form

(%) for a # b is called a mismatch column (substitution column).

There is an obvious one-to-one relationship between edit sequences that transform x into
y and alignments of x and y. The edit operation C corresponds to (Z) for a € 3, S, when
applied to a character a corresponds to (‘g) for a,b € ¥ with a # b, I, corresponds to (;)
for a € X, and D corresponds to (3) for a € X.

Observation 8 Let z € X y € 3", and let A be an alignment of x and y. Let e be the
edit sequence corresponding to A. Then

max{m,n} < |A| = |e|] < m + n.

23

4 Pairwise Sequence Alignment

Proof. The equality |A| = |e| follows from the equivalence of edit sequences and align-
ments. Since each edit operation (alignment column) consumes at least one character from
x or y and the column (i) is forbidden, their number is bounded by m+mn. The maximum
is reached if only insertions and deletions (indel columns) are used. On the other hand,
m = |z| < |A] since the length of A is at least the number of non-gap characters in the
first row of A. Similarly n <|A|, so that |A| > max{m,n}. The boundary case is reached
if the maximum number of copy and substitution operations (match/mismatch columns)

and only the minimum number max{m,n} — min{m, n} of indels is used. O

Definition 9 For the edit distance model, the cost of an alignment column is defined
as the cost of the corresponding edit operation. More precisely: The match columns have
a cost of 0 (like the copy operation), whereas the mismatch and indel columns have a
cost of 1 (like the substitute and indel operations), when using unit costs. The cost

of an alignment A = (A4, Ag,...,A,) is defined as the sum of its columns’ cost, i.e.,
cost(A) = > | cost(4;).

Definition 10 The alignment distance of two sequences x,y € X* is defined as
d(x,y) := min{cost(A) : A € A" is an alignment of z and y}.
The cost-minimizing alignments are given by the set
A%t (x,y) := {A € A* is an alignment of = and y and cost(A) = d(z,y)}.

When the cost function is clear from the context, a cost-minimizing alignment is often
also called an optimal alignment.

Note the following subtle point: The alignment cost of two sequences should not be con-
fused with the cost of a particular alignment of those sequences!

Problem 11 (Alignment Problem) For two given strings z,y € ¥* and a given cost func-
tion, find the alignment distance of x and y and one or all optimal alignment(s).

4.2 An Efficient Algorithm to Compute Optimal Alignments

While it is easy to find some alignment A € A* of two given sequences x € ¥* and y € 3%,
it may not be obvious how to find an optimal alignment of z and y. One simple way could
be to enumerate all possible alignments of x and ¥y, compute the cost of each of them,
and then choose one of minimum cost. However, since the number of alignments grows
exponentially (Waterman, 1995, Section 9.1), it is infeasible in practice to enumerate them
all. Instead, the following dynamic programming approach appears promising.

We define a (|z|+1) x (|Jy|+1) matrix D, called the alignment matrix (or edit matrix),
by

D(i,j) :==d(z[1...d,y[1...]]) for 0 <i <fz|,0<j <yl
We are obviously looking for D(|x|, |y|) = d(z,y). We shall point out how the distance of

short prefixes can be used to compute the distance of longer prefixes; for concreteness we
focus on standard unit costs.

24

4.2 An Efficient Algorithm to Compute Optimal Alignments

If i = 0, we are transforming z[1...0] = ¢ into y[1...j]. This is only possible with j
insertions, which together have cost j. Thus D(0,j) = j for 0 < j < |y|. Similarly
D(i,0) =i for 0 < i < |z|. The interesting question is how to obtain the values D(, j) for
the remaining pairs of (i, 7).

Theorem 12 For 1 <i < |z|,1<j <]|y|,

D(i— 1,5 = 1) + Ly
D(i,j) =min ¢ D(i—1,5) + 1,
D(i,j — 1) +1.

Proof. The proof is by induction on ¢ 4+ j. The basis is given by the initializations
mentioned above. By induction hypothesis we may assume that the theorem correctly
computes D(i — 1,7 — 1) = min{cost(A) | A is an optimal alignment of z[1...7 — 1] and
y[1...j — 1]}, solet Ax_be an optimal alignment for this case. Similarly, let A} be optimal
for D(i — 1,7) = min{cost(A) | A is an optimal alignment of z[1...i — 1] and y[1...j]|}
and A, be optimal for D(i,j — 1) = min{cost(A) | A is an optimal alignment of x[1...1]
and y[1...j —1]}.

We obtain three candidates for alignments to transform z[1...4] into y[1... j] as follows:
x[i]
ylJ]
y[j] are equal or not; in the former case the cost remains unchanged, in the latter case it
is increased by 1. (2) We extend A4 by a delete column (iﬂz]), increasing the cost by 1.

(3) We extend A, by an insert column (yfj]), increasing the cost by 1.

(1) We extend Ax_by a match or mismatch column (1), depending whether z[i] and

Recall that D(i,j) is defined as the minimum cost of any alignment of z[l...:] and
y[l...j]. Since we can pick the best of the three candidates, we have shown that in-
equality < holds in the theorem.

It remains to be shown that there can be no other alignment with lower cost. Assume such
an alignment A* exists and consider its last column C' and its prefix A’ such that A* = A'C.
If C is a deletion column, then A’ is an edit sequence transforming z[1...i—1] into y[1 ... j]
with cost(A*) = cost(A’) +1 < D(i — 1,7) + 1 by assumption; thus cost(A") < D(i — 1, j),
a contradiction, since D(i — 1, 7) is the optimal cost by inductive assumption. The other
options for o lead to similar contradictions: In each case, we would have seen a better
value already at a previous element of D. Therefore, such an A* cannot exist. O

It is important to understand that the above proof consists of two parts. The first part
shows that, naturally, by appropriate extension of the corresponding alignments, D(3, j) is
at most the minimum of three values. The second part shows that the optimal alignment
for D(i,7) is always one of those three possibilities.

Together with the initialization, Theorem 12 can be translated immediately into an algo-
rithm to compute the alignment distance. Some care must be taken, though:

e One might get the idea to implement a recursive function D that first checks for a
boundary case and returns the appropriate value, or otherwise calls D recursively
with smaller arguments. This is highly inefficient! Intermediate results would be
computed again and again many times. For example, to compute D(6,6), we need
D(5,5), D(5,6) and D(6,5), but to compute D(5,6), we also need D(5,5).

25

4 Pairwise Sequence Alignment

e It is thus much better to fill the matrix iteratively, either row by row, or column by
column, or diagonal by diagonal where ¢ + j is constant. This is called a pull-type
or backward dynamic programming algorithm. To obtain the value of D(i, j),
it pulls the information from previously computed cells.

Example 13 Let x = BCACD and y = DBADAD. We compute the edit matrix D as follows:

y e D B A D A D
x o 1 2 3 4 5 6
€ 0 0 1 2 3 4 5 6
B 1 1 1 1 2 3 4)
C 2 2 2 2 2 3 4 5
A 3 3 3 3 2 3 3 4
C 4 4 4 4 3 3 4 4
D 5) 4) 4 3 4 4

Hence the edit distance of = and y is d(z,y) = D(5,6) = 4. <

Let us analyze the time and space complexity of the pull-type algorithm. Assuming
|z| = m and |y| = n, we need to compute (m + 1) - (n + 1) values, and each computation
takes constant time; thus the running time is O(mn). The space complexity also appears
to be O(mn) since we apparently need to store the matrix D. However, it is sufficient
to keep, for instance in a column-wise computation, just the previous column, or in a
row-wise computation, just the previous row, in order to calculate the next one; thus the
space complexity is O(m + n).

Reconstructing an optimal alignment. The above statement about the space complexity
is true if we are only interested in the distance value. Often, however, we also would like
to know an optimal alignment. We essentially get it for free by the above algorithm, but
we need to remember which one of the three cases was chosen in each cell of the matrix;
therefore the space complexity increases to O(mn).

More precisely, to find an optimal alignment let us define the backtracing matrix F of
the same dimensions as D. We compute E while computing D, such that E(i,j) contains
the last edit operation of an optimal edit sequence that transforms x[1...1] into y[1...j].
This information is available whenever we make a decision for one of the three predecessors
to compute D(i,7). In fact, there may be several optimal possibilities for E(i,j). We can
use an array of three bits to store any combination of the following seven possibilities:
{{M}, {p}, {1}, {M,D}, {M,I}, {D,I}, {M,D,I}}, where M stands for match, D stands for
delete and I stands for insert column..

From FE, an optimal alignment A can be constructed backwards by backtracing (not to
be confused with backtracking as explaind on the facing page) where we use the stored
operations as a trace which we follow through the matrix F. Clearly A ends with one of
the column types stored in E(m,n), so we have determined the last column C of A. In

case of M, a match (2) or a mismatch column (%) is generated, in case of a D, a delete

column (3) is generated, and in case of an I an insert column (g) is generated. Then we

continue as follows.

26

4.2 An Efficient Algorithm to Compute Optimal Alignments

e If C' =M, continue with E(m — 1,n — 1).
e If C' =D, continue with E(m — 1,n).
e if C' =1, continue with E(m,n — 1).

We repeat this process until we arrive at FE(0,0). Note that in the first row we always
move left, and in the first column we always move up.

Example 13 (cont’d) For the example edit matrix above (x = BCACD and y = DBADAD),

the backtracing matrix looks as follows, where the three bits “pgr” represent p

(match/diagonal), ¢ = D (delete/vertical) and r = I (insert/horizontal).

y £ D B A D A D
€T 0 1 2 3 4 5 6
e 0 000 001 001 001 001 001 001
B 1 010 100 100 001 001 001 001
c 2 010 110 110 100 101 101 101
A 3 010 110 110 100 101 101 001
C 4 010 110 110 010 100 111 100
D 5 010 100 111 010 100 101 100

Backtracing starts at the bottom right corner, where the backtracing matrix has the entry
E(5,6) = 100. Therefore all optimal alignments end with a match column (3). The
algorithm proceeds with entry E(4,5) = 111, which means that all three predecessors
could have produced the maximum value D(4,5) = 4. Here we pick the horizontal one,
corresponding to an insertion column (;), and then move one field to the left where we
find the backtracing matrix entry F(4,4) = 010. This means we go another diagonal step
(mismatch column (S)) After that we can proceed with three more diagonal steps until
we reach the top-left corner of the matrix. When we proceed this way (alternatives exist),
then we arrive at the following optimal alignment:

B CAC - D
D BADATPD

If we want to obtain all optimal edit sequences, we systematically have to take differ-
ent branches in the E-matrix whenever there are several possibilities. This can be done
efficiently by a technique called backtracking, which finds systematically all solutions
(not to be confused with backtracing mentioned on the preceding page): We push the
coordinates of each branching E-entry (along with information about which branch we
took and the length of the partial edit sequence) onto a stack during backtracing. When
we reach F(0,0), we have completed an optimal edit sequence and report it. Then we go
back to the last branching point by popping its coordinates from the stack, remove the
appropriate prefix from the edit sequence, and construct a new one by taking the next
branch (pushing the new information back onto the stack) if there is still one that we have
not taken. If not, we backtrack further. As soon as the stack is empty, the backtracking
ends.

<

27

4 Pairwise Sequence Alignment

Problem 14 (All Optimal Alignments) Enumerate all optimal edit sequences (all optimal
alignments) of two sequences x € ¥™ and y € X",

Now it is easy to derive the details to prove the following:

Theorem 15 Problem All Optimal Alignments can be solved in O(mn + z) time, where z
is the total length of all optimal edit sequences of x and y.

Example 13 (cont’d) Our example z = BCACD and y = DBADAD contains six additional
optimal alignments that can be obtained by choosing alternative routes during the back-
tracing procedure. The full set of solutions is the following:

A1_<BCACD>
D B A D A D
= (s)
= (e oroed)
m=(,e ot n)
b= (oaenin)
sw=(oaann’y)
w=(paeoa’h)

Not surprisingly, all of these alignments have cost cost(A1) = cost(As) = cost(As) =
cost(As) = cost(As) = cost(Ag) = cost(Ar) = d(z,y) = 4. <

4.3 The Alignment Score

So far, we only considered cost models, e.g. the unit cost, to measure the distance between
two sequences. As long as we are interested in a global comparison, that makes sense.
But when we are interested in a local comparison to learn about the least different parts
of two sequences, we get a problem. A distance can only punish differences, not reward
similarities, since it can never drop below zero. Note that the empty sequence ¢ is a (trivial)
substring of every sequence and d(e,e) = 0; so this (probably completely uninteresting)
common part is always among the best possible ones. Therefore the problem of finding
the least different parts of two sequences is more easily formulated in terms of similarity
than in terms of dissimilarity or distance.

That means that we assign a positive score to each match of two identical characters
(corresponding to a copy operation) and a negative score to each mismatch (substitution
operation), and also to each indel column (insertion or deletion). The indel score often
has the same value for all characters ¢ € 2. Its absolute value is also called indel cost.

28

4.3 The Alignment Score

Definition 16 The score of an alignment A = (A, As,..., A,) is defined as the sum
of its columns’ scores, i.e., score(A) = > | score(A4;).

Definition 17 The alignment similarity of two sequences z,y € ¥* is defined as
s(z,y) := max{score(A) | A € A" is an alignment of x and y}.
The score-maximizing alignments are given by the set
AP (g, y) := {A € A* is an alignment of z and y and score(A) = s(x,y)}.

When the score function is clear from the context, a score-maximizing alignment is often
also called an optimal alignment.

29

5 Variations of Pairwise Sequence
Alignment

In the previous chapter we have seen that edit sequences and sequence alignments are
equivalent concepts to quantify and illustrate the differences (or similarities) of two given
sequences. In this chapter we will use only the alignment model because this is the concept
that is primarily used in bioinformatics. We will use the similarity scheme of maximizing
scores, although in most cases an equivalent method minimizing costs could be used as
well.

Let us look back at the alignment matrix of two input sequences x and y introduced in
Section 4.2. Any path from the top-left corner to the bottom-right corner corresponds to
an alignment of x and y, as can be easily seen from the way we reconstruct (from right
to left) an optimal alignment using the backtracing matrix. By applying the dynamic
programming scheme, i.e. filling the matrix in some way respecting the dependencies given
by the alignment problem, optimal alignment scores are computed for each pair of prefixes
from x and prefixes from y, and the final alignment is then found by backtracing.

In this chapter we show that by little modification of the “dependencies” mentioned in
the previous sentence, slightly modified alignment problems can be solved in essentially
the same way. To see this, consider the following general method:

Algorithm 18 (Universal Alignment Algorithm) In a (|z|+1) x (Jy|+1) alignment matrix
S define dependencies between the cells by an acyclic predecessor function pred(v) for
any cell v = (4,5), 0 < ¢ < |z| and 0 < j < |y|, in some way such that the top-left
corner vg = (0,0) has no predecessor and the bottom-right corner vg = (|z|,|y|) is not
the predecessor of any cell. The score of the top-left corner is S(vg) = 0. Then the score
S(v) of any other cell v, whose predecessors are already known, is computed as

S(v) = max {S(u)+ score(u — v)} (5.1)

u€pred(v)

where score(u — v) is the score of the alignment column corresponding to the step in the
edit matrix from cell u to cell v.

Since pred is acyclic, S is well-defined, and we can arrange the computation in such an
order that by the time we arrive at any cell v, we have already computed S(u) for all
predecessors needed for computing the maximum for S(v). A possible order is to proceed
row-wise through the rectangular matrix.

When computing S(v), we take note which of the predecessors are maximizing. After
arriving at vg, we trace back a maximizing path to vg in O(]A|) time to reconstruct an
alignment A. If we want to enumerate all optimal alignments we can use backtracking as
described above.

31

5 Variations of Pairwise Sequence Alignment

5.1 Global Alignment

Global alignment is what we have discussed so far: Both sequences must be aligned from
start to end. Often, the gap score is the same for all characters, say —y (with gap cost
v > 0).

It is a useful exercise to instantiate the Universal Alignment Algorithm shown in Equa-
tion (5.1) to this special case: As always, cell vg = (0,0) has no predecessor and therefore
score S(0,0) = 0. Cells (4,0) and (0,7) for 4, j > 1 have one predecessor from (i — 1,0)
and (0,j — 1), respectively. Internal cells (i, j) for i > 1 and j > 1 have three predecessors.
Therefore we obtain the following recurrence, known as the global alignment algorithm
or Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).

$(0,0) = 0

S(i,0) = S(E—1,0)—~ for 1 <i < |z

5(0,5) = S00,j-1)—~ for 1 <j <yl
S(i—1,7 — 1) + score(zxi], y[1])

S(i,j) = maxq S(i—1,j)—v for 1 <i<|z], 1 <j <[y
S(ivj_l)_7

The global alignment similarity of z and y is then found in cell (|z|, |y|):

Sglobal(x7y) = S(‘Z‘L ’yD

Note that this algorithm is essentially the same algorithm as the one in Theorem 12, just
phrased for scores instead of unit cost distances. It is easy to see that the time complexity
is O(|| - [y])-

5.2 Semi-global alignment

If one sequence, say z, is short and we are interested in the best match of x within y, we
can modify global alignment in such a way that the whole of x is required to be aligned
to any part of . This semi-global alignment is global in the short sequence and local
in the long sequence and also referred to as approximate string matching. In order to
allow a prefix gap in the upper row of the alignment free of charge, we consider that the
initial cell vg = (0, 0) is a predecessor of any cell v = (0, j) in the first row of the alignment
matrix, 1 < j < |y|, with score zero, i.e. score(vs — v) = 0. In addition, to allow a suffix
gap in the upper row of the alignment free of charge, we consider that any cell v = (|x|,)
in the last row of the alignment matrix, 0 < j < |y|, is a predecessor of cell vy = (|z|, |y|)
with score zero, i.e. score(v — vg) = 0.

Applying the Universal Alignment Algorithm to the alignment matrix modified as just

32

5.3 Free end gap alignment

described, we get the following recurrence.

S(0,0) = 0

S(,0) = S(—1,0)—~ for 1 <i < |z
S(i—1,j — 1) + score(x[i], y[7])

S(i,j) = max<¢ S(i—1,7)—~ for 1 <i<|zl,1 <7<y
S(i,j—1) —v

The semi-global alignment similarity is then the maximum entry in the last row:
Ssemi—global(xvy) = maX{S(LﬂJ) | 0<;< ‘y|}

Again, the time complexity is clearly O(|z| - |y|). A typical application of semi-global
alignment in bioinformatics is read mapping where the location of a (relatively short)
sequencing read is searched in a (large) genomic sequence in order to identify from which
region in the genome (e.g., from which gene) the read might originate.

5.3 Free end gap alighment

If the two sequences are more or less of the same length and we expect that they have
a long overlap (but may otherwise be rather unrelated), we have a similar situation as
for semi-global alignment in the sense that gaps at the beginning or at the end of the
alignment should be free of charge. Here, however, the gaps are usually not in the same
row of the alignment, but may be one in the first and the other one in the second row, or
vice versa. Therefore we extend the idea of semi-global alignment to both sequences. We
consider the initial cell vg = (0,0) is a predecessor of any cell v = (0,) in the first row
of the alignment matrix, 1 < j < |y|, and of any cell v = (¢,0) in the first column of the
alignment matrix, 1 < ¢ < |z|, all with score zero, i.e. score(vg — v) = 0. In addition,
to allow suffix gaps free of charge, we consider that any cell v = (|z|,j) in the last row
of the alignment matrix, 0 < j < |y|, and any cell v = (¢, |y|) in the last column of the
alignment matrix, 0 < i < |z|, is a predecessor of cell vy = (|z|,|y|) with score zero, i.e.
score(v = vg) = 0.

Applying the Universal Alignment Algorithm to free end gap alignment, we get the fol-
lowing recurrence.

$(0,0) = 0

S(i,0) = 5(0,0) for 1 <i < |x|

S(0,7) = 5(0,0) for 1 <j < |y
S(i — 1,5 — 1) + score(x[i], y[j])

S(i,j) = max{ S(i—1,j) -~ for 1<i<lal,1<j <1yl
S(i,j—1) =

The free end gap alignment similarity is then the maximum entry in the last row or the
last column:

Strec-end-gap (7,) = max (max{S(|z],5) | 0 < j < [y[}, max{S(i, |z[) | 0 < i < [2]}).

33

5 Variations of Pairwise Sequence Alignment

As before, the time complexity is O(|z| - |y|). Free end gap alignment is very important
for genome assembly (Chapter 9), i.e., when whole genomes are assembled from short
DNA fragments: One has to determine how the fragments overlap, taking into account
possible sequencing errors.

5.4 Local alignment

Often, two sequences x and y are not globally similar and also do not overlap at either
end. Instead, they may share one highly similar region (e.g. a conserved protein domain)
anywhere inside the sequences. In this case, it makes sense to look for the highest scoring
pair of substrings of x and y. This is referred to as an optimal local alignment of x and
y. Since a local alignment can start and end anywhere, the predecessor conditions in the
alignment matrix must be relaxed even further: The initial cell vg = (0,0) is a predecessor
of any cell v in the whole matrix (except vg itself) with score zero, and any cell v in the
whole matrix (except vg itself) is a predecessor of vy with score zero.

Explicitly written, we obtain the local alignment algorithm, also known as the Smith-
Waterman algorithm (Smith and Waterman, 1981). It is one of the most fundamental
algorithms in computational biology.

$(0,0) = 0

S(i,0) = 5(0,0) for 1 <i < |z|

5(0,5) = 5(0,0) for 1 < j < |y|
5(0,0) ‘

S(i,j) = max 28_1 i)_ lfscore(xm WD 1 <i< el 1< <yl
S(Zv.] - 1) Y

The local alignment similarity is then the maximum entry in the whole matrix:

Slocal(xay) = maX{S(Z7]> ’ 0 < i < ’1",0 S] < ‘y’}

Although the search space has increased, analysis shows that this alignment variant takes
only quadratic time O(|z| - |y|) as well, much better in fact than globally aligning each of
the O(|z|? - |y|?) pairs of substrings in O(|z|-|y|) time each, for a total time of O(|x|3-|y|3).
Because of its importance, this algorithm deserves a few remarks.

e Prior to the work of Smith and Waterman (1981), the notion of the “best” matching
region of two sequences was not uniquely defined and often computed by heuristics
whose output was taken as the definition of “best”. Now we have a clear definition:
Take any pair of substrings, compute an optimal global alignment for each pair, then
take the pair with the highest score.

e Since the empty sequences are candidates for substrings and receive a global align-
ment score of zero, the local alignment score of any two sequences is always nonneg-
ative.

34

5.5 Gap Cost Variations for Alignments

e Two random sequences should have no similar region. Of course, even a single
identical symbol will make a positive contribution to the score. Therefore small
positive scores are meaningless. Also, the average score in a random model should
be negative; otherwise we would obtain large positive scores with high probability
for random sequences, which makes it hard to distinguish random similarities from
true evolutionary relationships. We investigate these issues further in Section 6.3.

e Even though the O(]z|- |y|) running time appears reasonable at first sight, it can be-
come a high bottleneck in large-scale sequence comparison. Therefore, often a filter
or a heuristic is used. Several practical sequence comparison tools are presented in
Chapter 6.

e The O(|z|-|y|) space requirement for the backtracing matrix E is an even more severe
limitation than the time usage. In fact, linear-space methods exist (not explained
here—they incur a small time penalty, approximately a factor of two) and are widely
used in practice.

e The Smith-Waterman notion of local similarity has a serious flaw: It does not dis-
card poorly conserved intermediate segments. The Smith-Waterman algorithm finds
a local alignment with maximal score, but it is unable to find a local alignment with
maximum degree of similarity (e.g. maximal percent of matches). As a result, lo-
cal alignment sometimes produces a mosaic of well-conserved fragments, artificially
connected by poorly-conserved or even unrelated fragments.

Once again we emphasize that local alignment makes sense only for measuring with a score
function. If you use a cost function, the empty alignment would always be the best.

5.5 Gap Cost Variations for Alignments

General gap costs. So far, a gap (continuous stretch of indels in the same sequence) of
length ¢ receives a score of —¢ - ~y, where v > 0 is the gap cost (assuming that it is not
character-specific or position-specific). Therefore it does not matter whether we interpret
a run of ¢ consecutive indels as one long gap or as £ gaps of length 1. This model is called
linear gap costs. (In general a function g : R — R is linear if g(k + k') = g(k) + g(k')
and g(Az) = Ag(z).)

When indels occur in biological sequences, they often concern more than a single charac-
ter. Therefore we need more flexibility for specifying gap costs. The most general (not
character- or position-specific) case allows a general gap cost function g : N — RS’ ,
where we pay g(¢) for a gap of length £. We always set g(0) = 0 and frequently, in practice,
we demand that gap costs are subadditive, i.e., g(k + k') < g(k) + g(k') for all k, k' > 0.
In this way, we penalize longer gaps relatively less than shorter gaps.

In protein coding regions, however, the following gap cost function may be reasonable;
note that it is not subadditive:

£/3 if f mod 3 =0,
g(l) == / .
¢+ 2 otherwise.

35

5 Variations of Pairwise Sequence Alignment

For the increased generality, we have to pay a price: a significant increase in the number of
predecessors of a cell in the alignment matrix and therefore in the time complexity of the
algorithm. The changes apply to all of the above variations (global, semi-global, free end
gap, and local alignment). To the appropriate alignment matrix and predecessor function
we add for each cell v = (7,7), 0 <i < |z|and 0 < j < |y|,

e the vertical predecessors v' = (i, j) for all pairs 0 < i’ < i < |z| with respective
scores score(v’ — v) = g(i — ') and

e the horizontal predecessors v' = (i, ;') for all pairs 0 < j' < j < |y| with respective
scores score(v' — v) = g(j — j').

Since each cell has now O(|z|+|y|) predecessors, the running time increases to O(|z||y|(|z|+
ly])) and is therefore cubic. In the following we show explicitly the global alignment
algorithm with general gap costs g : N — Rar.

5(0,0) = 0
S(i,0) = maxo<y<i{S(,0) —g(i—1i)} for 1 <i < |x|
5(0,7) = maxo<<;{5(0,5) — g(j —4)} for 1 <j <yl
S(i—1,7 — 1) 4 score(x[i], y[4])
S(.d) = max{ masocoa{S(d)—gli—1)} b fr1<i<lal 1<) <

maxogj/q{s(i,j)—9(—)}

The global alignment similarity with general gap costs g is then found as usual in cell

(I, [yl):

s (@) = S(lzl, yl).

Although this starts to look intimidating, remember that this formula is still nothing else
than Equation (5.1). General gap costs are useful, but the price in time complexity is
usually too expensive to be paid. Fortunately, two special cases (but still more general
than linear gap costs) allow more efficient algorithms: affine gap costs, to be discussed
next, and concave gap costs, an advanced topic not considered in these notes.

Affine gap costs. Affine gap costs are important and widely used in practice. A gap
cost function g : N — R{ is called an affine gap cost function if g(I) =d+ (I —1) - e
where d > 0 is called the gap open cost and e, 0 < e < d, is called the gap extension
cost. The gap open cost is paid once for every consecutive run of gaps, namely at the first
(opening) gap. Each additional gap character then costs only e. Of course, this case can
be treated in the framework of general gap costs. We shall see, however, that a quadratic
O(|x||y|) time algorithm exists; the idea is due to Gotoh (1982). Again, we explain it for
global alignment and the required modifications for the other alignment types are easy.

Recall that S(3, 7) is the alignment score for the two prefixes z[1...i] and y[1...j]. In gen-
eral, such a prefix alignment can end with a match/mismatch, a deletion, or an insertion.
In the indel case, either the gap is of length ¢ = 1, in which case its cost is g(1) = d, or its
length is ¢ > 1, in which case its cost can recursively be computed as g(¢) = g(¢ — 1) + e.

36

5.5 Gap Cost Variations for Alignments

The main idea is to additionally keep track of (i.e., to tabulate) the state of the last
alignment column. In order to put this idea into an algorithm, we define the following
additional two matrices:

V(i, j) = max {score(A) ’ A is an alignment of the prefixes z[1...7] and y[1...j] }

that ends with a gap character in y
N A is an alignment of the prefixes z[1...i] and y[1...j]
H{(i, j) = max {SCOTQ(A) ’ that ends with a gap character in x

Then
S(i,j) = max {S(i — 1,j — 1) + score(x[i], y[j]), V (i, 7), H(, j)} ,

which gives us a method to compute the alignment matrix S, given the matrices V' and
H. It remains to explain how V and H can be computed efficiently. Consider the case of
V(i,7): A gap of length ¢ ending at position (7, j) is either a gap of length ¢ = 1, in which
case we can easily compute V (i,7) as V(i,5) = S(i — 1,7) — d. Or, it is a gap of length
£ > 1, in which case it is an extension of the best scoring vertical gap ending at position
(1—1,7), V(i,j) =V (i—1,7) — e. Together, we see that for 1 <i < |z| and 0 < j < |y|,

V(i,j) =max{S(i—1,j) —d,V(i—1,j) —e}.
Similarly, for horizontal gaps we obtain for 0 <14 < || and 1 < 5 < |y,
H(i,j) =max{S(i,j—1)—d,H(i,j —1) —e}.

The border elements of V and H are initialized in such a way that they do not contribute
to the maximum in the first row or column:

V(0,7) = —oo for 0 < j < |y|, H(i,0) = —oo for 0 <i < |x|.
S is initialized as follows:

S5(0,0) =0,5(4,0) =V (7,0) for 1 <i < |z|,S(0,5) = H(0,j) for 1 < j <|y|.

An analysis of this algorithm reveals that it uses O(|z||y|) time and space, although hidden
in the O-notation is a larger constant factor compared to the case of linear gap costs. Note
that, if just the optimal score is required, only two adjacent columns (or rows) from the
matrices V', H, and S are needed. For backtracing, only the matrix E is needed; so V and
H never need to be kept in memory entirely. Thus the memory requirement for pairwise
alignment with affine gap costs is even in practice not much worse than for linear gap
costs.

Example 19 Given amino acid strings WW and WNDW, compute the optimal global alignment
score under affine gap costs with the following scoring scheme: Gap open cost of d = 11,
gap extension cost of e = 1 and the substitution weights taken from the BLOSUMG62
matrix (Henikoff and Henikoff, 1992), score(W, W) = 11, score(W,N) = —4, score(W,D) = —4.

Figure 5.1 shows the three matrices V, H and S used by the Gotoh algorithm to calculate
a global alignment with affine gap costs. <

37

5 Variations of Pairwise Sequence Alignment

€ W N D W
—00 —00 —00 —00 —OQ
-11 -22 -23 -24 -25
—12 0 -11 -12 -13

€ W N D W
—o0 —11 —-12 -13 -14
—o0 =22 0 -1 -2
—o0 —23 —-11 -4 -5

= = o | <<
= = o=

S € W N D W

€ 0 -1 -12 -13 -14
wi|-11 11 0 -1 -2
W | —12 0 7 -4 10

Figure 5.1: The three matrices V, H and S that are used to calculate a global alignment
with affine gap costs with the Gotoh algorithm. The score-maximizing path is
marked in bold face. If a value of the maximizing path of S originated from
V or H, these cells are marked in bold face as well.

38

6 Pairwise Alignment in Practice

6.1 Alignment Visualization with Dot Plots

We begin with a visual method for (small scale) sequence comparison that is very popular
with biologists. The most simple way of comparing two sequences z € X" and y € X"
is the dot plot: The two sequences are drawn along the horizontal respectively vertical
axis of a coordinate system, and positions (i, 7) with identical characters z[i] = y[j] are
marked by a dot. Its time and memory requirements are O(mn).

By visual inspection of such a dot plot, one can already observe a number of details about
similar and dissimilar regions of z and y. For example, a diagonal stretch of dots refers to
a common substring of the two strings, like SCENCE in Figure 6.1, upper part.

A disadvantage of dot plots is that they do not give a quantitative measure how similar the
two sequences are. This is, of course, what the concept of sequence alignment provides.
Dot plots are still important in practice since the human eye is not easily replaced by more
abstract numeric quantities.

Another disadvantage of the basic dot plot, especially for DNA with its small alphabet
size, is the cluttering because of scattered short “random” matches. Note that, even on
random strings, the probability that a dot appears at any position, is 1/|X| = 1/4 for
DNA. So a quarter of all positions in a dot plot are black, which makes it hard to see
the interesting similarities. Therefore the dotplot is usually filtered, e.g. by removing all
dots that are not part of a consecutive match of length > ¢, where ¢ is a user-adjustable
parameter (see Figure 6.1, lower part).

6.2 Fundamentals of Rapid Database Search Methods

In practice, pairwise alignment algorithms are used for two related, but still conceptually
different purposes, and it is important to keep the different goals in mind.

1. True pairwise alignment: Given two sequences z,y € ¥* that we already know or
suspect to be similar, report all similar regions and show the corresponding (even
suboptimal) alignments.

2. Large-scale database search: Given a query x € ¥* and a family (database) Y of
candidates, find out (quickly) which y € Y share at least one sufficiently similar
region with z and report those y along with the similarity score (e.g. the alignment
score). The alignment itself is of little interest in this case; suboptimal alignments
are of even less interest.

39

6 Pairwise Alignment in Practice

FLUORESCENCETISESSENTTIATL

R °

E ° ° e) °

M

I ° °
N ° °

I ° °
S ° ° oo

C ° °

E) ° o) °

N . °

C ° °

E ° ° [)) °

R |
E | | ° °) °
M
I . .
N))
I °
S oo
C
E . |
N |
C
E . .
® unfiltered W filtered (¢ = 2) . filtered (¢ = 3)

Figure 6.1: Upper part: Unfiltered dot plot. Lower part: Filtered dot plot with different
filters applied. Here the filter keeps only those positions (i, j), that are part of
a common substring of length > ¢.

40

6.2 Fundamentals of Rapid Database Search Methods

The rest of this chapter is devoted to methods aiming at the second goal. Most database
search methods in bioinformatics consider local and not global alignment. The simple
reason is that entries in biological sequence databases often contain only parts of a gene
or protein sequence and therefore global comparison may not be successful, while local
overlaps will still be detected. Conversely, if two globally matching sequences are aligned
with a local method, this will still work well and produce a nice global or near-global
alignment.

An important idea in order to allow for fast database search is filtering. Such methods
are often used in practice for large-scale database search. In the first (filtration) phase,
accuracy is sacrificed for speed, in order to quickly identify several (but not all) sequences
that are dissimilar from the query and do not need to be considered further. Then, in
the second (verification) phase the quadratic-time algorithms of the previous chapter are
considered to produce the exact result.

The following very simple observation, the so-called g-gram lemma, can be used to
identify areas in two sequences where a strong local similarity may reside, and therefore
build a good basis for methods implementing the filtration phase, if one sequence is the
query and the other is a candidate database sequence:

Lemma 20 Given a local alignment of length ¢ with at most e errors (mismatches or
indels), the aligned regions of the two strings contain at least T'(¢,q,e) := ¢+ 1—q-(e+1)
common g¢-grams.

Proof. The number of common ¢-grams between two identical strings of length £ is {—qg+1.
Each single-letter difference between the strings affects at most ¢ of these g-grams and
therefore reduces their number by at most q. Therefore the number of ¢g-grams that are
unaffected by e errors is at least { —g+1—e-gq=¢+1—¢q-(e+1). O

Based on this lemma simple methods can be devised for finding database entries with
strong local similarities to a query sequence (seeds) that in later steps then may be
extended into longer matches. The methods have in common that the ¢-grams in the
database need to be organized so that they can be accessed quickly. The g-gram index
is a suitable datastructure for this task:

Definition 21 A g-gram index for y € ¥" is amap [: ¥7 — P({l,...,n — ¢+ 1})
such that I(z) = {i1(2),i2(2),...}, where i1(2) < i2(z) < ... are the starting positions
of the g-gram z in y. Clearly, |I(z)| is the occurrence count of z in y, i.e. the number of
occurrences of z in y.

A straightforward (but inefficient!) O(|X]? 4+ gn) time method to create a g-gram index
would be to use an (initially empty) dictionary with g-grams as keys and position arrays
as values. One would slide a window of length ¢ across y, and each position is added to
the list of the appropriate g-gram.

A more low-level and efficient O(|X|? + n) time method is to use two integer arrays
first[0..|X]?] and pos[0..n — ¢+ 1] and a g-gram ranking function that assigns to each
g-gram an integer between 0 and |X|? — 1, illustrated in Figure 6.2. All starting positions
of g-gram z with rank r are consecutively stored in pos, starting at position first[r] and

41

6 Pairwise Alignment in Practice

x = AAACAAAAACGAAAAGTAAATC

1234567 8 91011121314 1516171819202122

rank first pos
0o AAAA 0O | —— 30 5
1 AAAC 3 1 6
2 AAAG 5 \ 2 2
3 AAAT 6 3 1
4 AACA 7 4 7
5 AACC 8 s |13
6 AACG 8 6118
; AACT [9 \ 2
g AAGA 9 8 8
9 AAGC 9 9| 14
10 AAGG 9 / 10 | 19
11 AAGT 9 / 11
12 AATA 10
13 AATC 10
14 AATG 11 18
255 TTTT
256 19

Figure 6.2: Illustration of an efficient g-gram index data structure for ¢ = 4 and the input
string y = AAACAAAAACGAAAAGTAAATC. A g-gram receives the rank correspond-
ing to its representation as a 4-ary number with rank(A) = 0, rank(C) = 1,
rank(G) = 2 and rank(T) = 3.

ending at position first [r + 1] — 1 (assuming that first[|X|?] = n — ¢+ 2). These can
be constructed with a simple two-pass algorithm that scans y from left to right twice. In
the first pass it counts the number of occurrences of each g-gram and creates first. In
the second pass it inserts the g-gram starting positions at the appropriate spots in pos.
Since the ranking function update takes constant time instead of O(q) time, this version
is more efficient (and also avoids object-oriented overhead).

6.3 Alignment Statistics

6.3.1 Preliminaries

In this section, we present some basic probabilistic calculations that are useful for choosing
appropriate parameters of database search algorithms and to evaluate the quality of local
alignments.

Often it is a problem to rank two alignments, especially if they have been created from
different sequences under different scoring schemes (different score matrix and gap cost
function): The absolute score value cannot be compared because the scores in one matrix
might be scaled with a factor of 10, while the scores in the other matrix might be scaled
with a factor of 100, so scores of 67 and 670 would not indicate that the second alignment
is any better.

42

6.3 Alignment Statistics

Statistical significance computations provide a universal way to evaluate and rank align-
ments (among other things). The central question in this context is: How probable is it to
observe the present event (or a more extremal one) in a null model?

Definition 22 A null model in general is a random model for objects of interest that does
not contain signal features. It specifies a probability distribution on the set of objects under
consideration.

More specifically, a null model for pairwise sequence alignment (for given sequence
lengths m and n) specifies a probability for each sequence pair (z,y) € ™ x ™.

Definition 23 The most commonly used null model for pairwise sequence alignment is the
i.i.d. model', where each sequence is created by randomly and independently drawing
each character from a given alphabet with given character frequencies f = (f.)cex. The
probability that a random sequence X of length m turns out to be exactly z € ™ is
the product of its character frequencies: P(X = x) = [[[Z; fg;). Similarly, P(Y = y) =
H?Zl fyij- The probability that the pair (X,Y) is exactly (z,y) is the product of the
individual probabilities: P((X,Y) = (z,y)) = P(X =z) - P(Y = y).

When we observe an alignment score s for two given sequences, we can ask the following
two questions: For random sequences from the null model of the same length as the given
ones, what is the probability that two of these sequences have an alignment score of at
least s and what is the expected number of pairwise alignments with an alignment score
of at least s?7 The probability is called the p-value and the expected number is called the
e-value associated to the event of observing score s.

Definition 24 The p-value of an event (with respect to a null model) is the probability
to observe the event or a more extremal one in the null model.

Definition 25 The e-value of an event (with respect to a null model) is the expected
number of events equal to or more extremal than the observed one in the null model.

Note that the null model ensures that the sequences have essentially no built-in similarity,
since they are chosen independently. Any similarity measured by the alignment score is
therefore due to chance. In other words, if a score > s is quite probable in the null model,
a score value of s is not an indicator of biological similarity or homology. The smaller
the p-value and the e-value, the less likely it is that the observed similarity is simply due
to chance and the more significant is the score. Good p-values are for example 10710 or
1020,

A p-value can be converted into a universally interpretable score (a measure of surprise
of the observed event), e.g. by B := —logy(p), called the bit score. A bit score of B > b
always has probability 27 in the null model.

It is often a difficult problem to compute the p-value associated to an event. This is
especially true for local sequence alignment. The remainder of this section provides an
intuitive, but mathematically inexact approach.

14 i.d.” is abbreviated for independent and identically distributed.

43

6 Pairwise Alignment in Practice

6.3.2 Statistics of g-gram Matches and FASTA Scores

Let us begin by computing the exact p-value of a g-gram match at position (7, j) in the
alignment matrix. In the following, X and Y denote random sequences of length m and
n, respectively, from the null model.

Look at two arbitrary characters X[i] and Y[j]. What is the probability p that they are
equal? The probability that both are equal to ¢ € ¥ is f.- f. = f2. Since ¢ can be any
character, we have

p=PX[i]|=Y[j])=>_ f2.

ceX
If the characters are uniformly distributed, ie., if f, = 1/|¥| for all ¢ € X, then
p=1/[Xl.

Now let us look at two g-grams X[i...i+¢g— 1] and Y[j...j + ¢ — 1]. They are equal if
and only if all ¢ characters are equal; since these are independent in the i.i.d. model, the
probability of an exact g-gram match (Hamming distance zero) is

po(q) =P(du(X[i...i+q—1],Y[j...j+¢—1]) =0)
=P(X[i...i+q—1]=Y[j...j+q—1]) =pL
We can also compute the probability that the g-gram contains exactly one mismatch

(probability 1 — p) and ¢ — 1 matches (probability p each): There are ¢ positions where
the mismatch can occur; therefore the total probability for Hamming distance 1 is

P(dp(X[i...i+q—=1,Y[j...j+q=1)=1)=q-(1—p)-p*".
Taken together, the probability of a g-gram match with at most one mismatch is
pi(g) =Pldp(X[i...i+q=1,Y[j...i+q—1]) <1)=[p+q(1 —p)]-p"".

Similarly, we can compute the p-value pi(q) of a g-gram match with at most & mismatches.

Online database search. So far, we have considered fixed but arbitrary coordinates (i, j).
If we run a g-gram based filter in a large-scale database search and consider each ¢-gram
a hit that must be extended, we are interested in the e-value, the expected number p(q)
of exact hits, and the probability p*(q) of at least one hit. This is a so called multiple
testing problem: At each position, there is a small chance of a random g-gram hit.
When there are many positions, the probability of seeing at least one hit somewhere can
become large, even though the individual probability is small.

Since there are (m — ¢+ 1) - (n — g + 1) positions where a g-gram can start and each has
the same probability, we have

wg =(m-qg+1)-(n—q+1) pi

Computing p*(q) is much more difficult. If all positions were independent and p? was small,
we could argue that the number of hits N(¢) has a Poisson distribution with expectation

44

6.3 Alignment Statistics

1(q). Since the probability of having zero hits is P(N(q) = 0) = eﬂl(q)d% = e M9 see
Section 2.6, the probability of having at least one hit equals the probability of not having
zero hits: p*(¢) =P(N(q) > 1) =1 —P(N(q) = 0) which results to

p (@) =1—P(N(q)=0)=1—e*9

However, many potential g-grams in the alignment matrix overlap and therefore cannot
be independent.

The longest match. We can ask for the p-value of the longest exact match between
x and y being at least ¢ characters long, P(L(z,y) > ¢). This probability is equal to
the probability of at least one match of length at least ¢, which is p*(¢) = 1 — e Hl) =
1 — e~ (m=tD)-(n=t+1)p | — o=mnp’ o il if mnp? < 1.

The take-home message is: For relatively large ¢, the probability that the longest ex-
act match has length ¢ increases linearly with the search space size mn and decreases
exponentially with the match length £.

6.3.3 Statistics of Local Alignments

In the previous section we have argued that, if we measure the alignment score between
random sequences X and Y of lengths m and n simply by the length L(X,Y") of the longest
exact match, we get

pys

P(L(X, Y) > 6) ~1— e—mnpe —1— e—Cmne*
for constants C' > 0 and A > 0 such that p = e~ .

There is much theoretical and practical evidence that the same formula is still true if the
length of the longest exact match is replaced by a more complex scoring function for local
alignment that also allows mismatches and gaps. Restrictions are that the gap cost must
be reasonably high (so the alignment is not dominated by gaps) and the average score of
aligning two random characters must be negative (so the local alignment does not become
global just by chance). In this case it can be argued (note that we haven’t proved anything
here and that our derivations are far from mathematically exact!) that the local alignment
score S(X,Y) also satisfies

At

PS(X,Y) > 1)~ 1~ e Omne ™ | Cmne M if Cmne M < 1

with constants C' > 0 and A > 0 that depend on the scoring scheme. This distribution is
referred to as an extreme value distribution or Gumbel distribution.

45

6 Pairwise Alignment in Practice
6.4 BLAST: A fast Database Search Method

BLAST? (Altschul et al., 1990) is perhaps the most popular program to perform bio-
logical sequence database searches. Here we describe the program for protein sequences
(BLASTP). We mainly consider an older version that was used until about 1998 (BLAST
1.4). The newer version (BLAST 2.0 and later) is discussed at the end of this section.

BLAST 1.4. The main idea of protein BLAST is to first find high-scoring g-gram hits,
so-called BLAST hits, and then extend them.

Definition 26 For a given ¢ € N and k£ > 0, a BLAST hit of x € X" and y € X" is a
pair (4, 7) such that score(x[i...i+q¢—1],y[j...7+q—1]) > k.

To find BLAST hits, we proceed as follows: We create a list Ni(z) of all g-grams in
3. that score highly if aligned without gaps to any g-gram in the query = and note the
corresponding positions in x.

Definition 27 The k-neighborhood Ni(z) of z € ¥™ is defined as

Ni(z) :={(2,1) | z € 4,1 <i<m—q+ 1,score(z,z[i...i+q—1]) > k}.

The k-neighborhood can be represented similar to a ¢g-gram index: We extend table pos
such that for each z € 39, we store consecutively in pos the set Py(z) of positions i such
that (z,7) € Ng(z), see Figure 6.3.

The size of this index grows exponentially with ¢ and 1/k, so these parameters should
be selected carefully. For the PAM250 score matrix, ¢ = 4 and k = 17 have been used
successfully.

Once the index for x has been created, for each database sequence y € Y the following
steps are executed.

1. Find BLAST hits: Scan y from left to right with a ¢g-window, updating the current
g-gram rank in constant time. For each position j, the hits are {(z,7) : (2,i) €
Ni(ylj...j+q—1])}. This takes O(|y| + h) time, where h is the number of hits.

2. Each hit (i,7) is extended without gaps along the diagonal to the upper left and
separately to the lower right, hoping to collect additional matching characters that
increase the score. Each extension continues until too many mismatches accumulate
and the score drops below M — X, where M is the maximal score reached so far and X
is a user-specified drop-off parameter. This is the reason why this extension method
is called X-drop algorithm. The maximally scoring part of both extensions is
retained. The pair of sequences around the hit delivered by this extension is called
a maximum segment pair (MSP). For any such MSP, a significance score is
computed. If this is better than a pre-defined significance threshold, then the MSP
is kept for the next step.

?Basic Local Alignment Search Tool

46

6.5 DIAMOND

x = AAACAAAAACGAAAAGTAAATC

1234567 891011121314 1516171819202122

rank first pc.>s .
o AAAA 0O |— 3 0 1 :
1 AAAC 12 1 2 16] 12 31| 7
2 AAAG 20 2 3 17| 13 32| 12
3 AAAT 28 3 4 18] 18 33| 13
4 AACA 36 7 19] 19 34| 14
5 AACC 41 —6- 20| 1 3501 18
6 AACG 46 6 7 a| 53| 2

7111 22 6 37 5

8112 23| 7 38| _6

: 13 4] 8 39| 8

: 17 \i\ﬂ\ 40| 12

11 L8 26| 13 e a1 1

255 TTTT 12 1 27| 18 42| 2
256 247 13 5 1 a3 7
14 6 29 44| 8

15 7 30] 6 \45 19

Figure 6.3: Illustration of the BLAST index storing the k-neighborhood of the input string
x = AAACAAAAACGAAAAGTAAATC for ¢ = 4 and k = 3 (unit score).

3. MSPs on different diagonals are combined.

4. A combined significance threshold is computed.

BLAST 2.0. In later versions of BLAST (BLAST 2.0 or Gapped BLAST, see Altschul
et al. (1997)), a different and much more time-efficient method is used. As before, hits are
searched but with reduced values for k and ¢. This results in more hits. However, BLAST
2.0 looks for pairs of hits on the same diagonal within some maximal distance. The mid
point between two hits on a diagonal is then used as the starting point for the X-drop
algorithm described above. Usually only a few regions are extended, which makes the
method much faster. Practice shows that the two-hit approach is similar w.r.t. sensitivity
compared to the one-hit approach.

6.5 DIAMOND

A modern and much more efficient alternative software for aligning DNA or protein se-
quences against a protein database is DIAMOND (Buchfink et al., 2015). It combines the
classical seed and extend paradigm with a clever double-indexing strategy for query and
database. In addition, it is memory efficient, avoiding cache misses, speeding up the pro-
cedure even more. Therefore, in a setting where the same query is used in many searches,
for example in a metagenomic study or an all-against-all protein sequence comparison,
DIAMOND is several thousand times faster than BLAST.

47

7 Multiple Sequence Alighment

7.1 Basic Definitions

Multiple (sequence) alignment deals with the problem of aligning generally more than
two sequences. While at first sight multiple alignment might look like a straightforward
generalization of pairwise alignment, we will see that there are clear reasons why multiple
alignments should be considered separately, reasons both from the application side, and
from the computational side. In fact, the first applications of multiple alignments date
back to the early days of phylogenetic studies on protein sequences in the 1960s. Back then,
multiple alignments were possibly of higher interest than pairwise alignments. However,
due to the computational hardness the progress on multiple alignment methods was slower
than in the pairwise case, and the main results were not obtained before the 1980s and
1990s.

A multiple alignment is the simultaneous alignment of several sequences, usually displayed
as a matrix with multiple rows, each row corresponding to one sequence.

The formal definition of a multiple sequence alignment is a straightforward general-
ization of that of a pairwise sequence alignment (see Section 4.1). We shall usually assume
that there are k > 2 sequences s1, ..., s to be aligned.

Definition 28 Let ¥ be the character alphabet, and si,...,s, € ¥*. Then A(k) :=
(SU{-}E\{(-)*} is the multiple alignment alphabet for k sequences. In other words,
the elements of this alphabet are columns of k symbols, at least one of which must be a
character from 3.

The projection of a multiple alignment A to the i-th sequence is a function 7y + A(k)* —
>* where
ay a; if a; 7& -
()=
{Z}((“k)) {6 if a; = -

is applied successively to all columns of the input alignment A. In other words, the
projection reads the i-th row of A, omitting all gap characters.

A global multiple alignment of s1,...,s; is a k x [-matrix A, where k and [denote
the number of rows and columns of the alignment, respectively, with 7;,(A) = s; for all

i=1,...,k, such that A contains no column (:)

We generalize the definition of the projection function to a set I of sequences (in particular
to two sequences).

49

7 Multiple Sequence Alignment

Definition 29 The projection of a multiple alignment A of k sequences to an index set
I = {i1,ia,...,14}, ¢ < k and iy < i3 < ... < ig, where each i; corresponds to an index
of one of the k sequences (I C {1,...,k}), is defined as the function 77 : A(k)* — A(q)*
that maps an alignment column a = (:Z) as follows:

a1 if ZZl = :
Trl((a:k))iz Eail (lq) ()

(a{) otherwise
iq

In other words, the projection selects the rows with indices given by the index set I from
the alignment and omits all columns that consist only of gaps. The definition is illustrated
in the following example. The term projection is motivated in Figure 7.1.

Example 30 Let

- A CCGATC -
A_| -2 - T -
|l T A CTGA - C -
- A CCGAACG
Then
A CCGATC -
m2p(4) = < A - T G A A - G)
T A CTGA - C -
Ty d) = (— A CCGAAC G)
A CCGATGC
7T{17274}(A) = A T G A A - G
A CCGAATCG

7.2 Why multiple sequence comparison?

In the following we list a few justifications why multiple sequence alignment is more than
just the repeated application of pairwise alignment.

e In a multiple sequence alignment, several sequences are compared at the same time.
Properties that do not clearly become visible from the comparison of only two se-
quences will be highlighted if they appear in many sequences. For example, in the
alignment shown in Figure 7.2 (top), if only s; and s9 are compared, the two white
areas might look most similar, inhibiting the alignment of the two gray regions. Only
by studying all five sequences at the same time (Figure 7.2, bottom) it becomes clear

that the gray region is a better characteristic feature of this sequence family than
the white one.

50

7.2 Why multiple sequence comparison?

S1

iz

Figure 7.1: Projection of a multiple alignment of three sequences si, s3,s3 on the three
planes (s1, $2), (s2,s3) and (s3, $1).

e Sometimes alignment ambiguities can be resolved due to the additional information
given, as the following example shows: s; = VIEQLA and ss = VINLA may be aligned
in the two different ways

(VI E QL A (VI E QL A
Al(VIN—LA) andAQ(VI—NLA)‘

Only the additional sequence s3 = VINQLA can show that the first alignment A; is
probably the correct one.

e Dissimilar areas of related sequences become visible, showing regions where evolu-
tionary changes happened.

The following two typical uses of multiple alignments can be identified:

1. Highlight similarities of the sequences in a family. Examples for applications of this
kind of multiple alignments are:

e sequence assembly,

e molecular modeling, structure-function conclusions,
e database search,

e primer design.

2. Highlight dissimilarities between the sequences in a family. Here, the main applica-
tion is the analysis of evolutionary relationships, like

e reconstruction of phylogenetic trees,
e analysis of single nucleotide polymorphisms (SNPs).

In conclusion: One or two homologous sequences whisper ... a full multiple alignment
shouts out loud. (Hubbard et al., 1996)

o1

7 Multiple Sequence Alignment

S92 = — - -
Y

[T---. W
A1 ‘—L“~~\\-:§“‘:“—s“\
R ﬁ*u —
Ay | .-l
Ay .-l
As [-0

Figure 7.2: A small pattern present in many sequences may become better visible in a
multiple sequence alignment.

7.3 Sum-of-Pairs Alignment

We have not discussed quantitative measures of multiple sequence alignment quality so
far. In fact, several such measures exist. In this section we will define the sum-of-pairs
cost as one example, and in Chapter 8 we will cover the tree cost as another one.

Like in pairwise alignment, the first choice one has to make is that between a distance
(cost) and a similarity (score) function. Again, both are possible and being used, and one
always has to make sure not to confuse the two. We will mostly use cost functions.

The multiple alignment cost functions discussed here are based on pairwise alignment cost
functions, here denoted by costa(+) to highlight the fact that they apply to two sequences.
(They may be weighted or unweighted, with homogeneous, affine, or general gap costs.)

Definition 31 The sum-of-pairs cost is just the sum of the costs of all pairwise projec-
tions:

costgp(A) = Z costa(Tp,q1 (A))-

1<p<q<k

(We similarly define the sum-of-pairs score scoregp(A) of a multiple alignment A, and
all definitions here and in the next section can be adapted in the same spirit.)

Example 32 Let s; = CGCTT, so = ACGGT, s3 = GCTGT and
c G ¢ T - T
A= - A C G G
- G C T G

T
T

Assuming that costa(+) is the unit cost function, we get costgp(4A) =4+2+2 =38. <

52

7.4 Multiple Sequence Alignment Problem
7.4 Multiple Sequence Alignment Problem

The multiple sequence alignment problem is formulated as a direct generalization of the
pairwise case.

Problem 33 (Multiple Sequence Alignment Problem) Given k sequences si,so,..., Sk
and a multiple alignment cost function cost, find an alignment A°P* of s1, s9, ..., s such
that cost(A°P!) is minimum among all possible alignments of s1, so, . . ., Sk.

Such an alignment A is called an optimal multiple alignment of si, so, ..., s, and
the value dsp(si,s2,...,sk) 1= cost(A%") is the optimal multiple alignment cost of
81,82y...,S8k-

Hardness. Sum-of-pairs alignment is an NP-hard! optimization problem with respect to
the number of sequences k& (Wang and Jiang, 1994). While we will not prove this here, we
give an intuitive argument why the problem is difficult.

Let us have a look at the following example. It shows that sum-of-pairs-optimal multiple
alignments can not be constructed “greedily” by combination of several optimal pairwise
alignments:

Example 34 Let s; = CGCG, so = ACGC and s3 = GCGA. In a unit cost scenario, the (only)
optimal alignment of s; and s is

12 (- C G C G
A _(ACGC—

with costy(A(1?)) = 2, and the (only) optimal alignment of s; and s3 is

(1,3) _ c G C G -
A (- G C G A
with costy(A1?) = 2.

Combining the two alignments into one multiple alignment, using the common sequence
s1 as seed, yields the multiple alignment

- C
A((172)7(173)) — A C

QO 0
Q QQ
Q|
= |

with COStSP(A((1’2)’(1’3))) = 24+ 2+ 4 = 8 However, this is not a sum-of-pairs optimal
alignment, which is

Aopt —

QQQ

Q0 Q@

= Q Q
|

A
G

with costgp(A%P) =2 +3+2=1. <

If you don’t know what exactly this means, just assume that any method solving this problem to
optimality takes really, really long.

53

7 Multiple Sequence Alignment

52
2D

3D

Figure 7.3: Top: Part of the 2-dimensional alignment matrix for two sequences. Bottom:
Part of the 3-dimensional alignment matrix for three sequences.

7.5 An Exact Algorithm

The Needleman-Wunsch algorithm for pairwise global alignment can be generalized for
the multiple alignment of k sequences s1, s, ..., st of lengths ni,ns, ..., ng, respectively,
in the obvious way (due to Waterman et al. (1976)). Here we give the formulation for
distance minimization. Naturally, an equivalent algorithm exists for score maximization.

Instead of a two-dimensional alignment matrix, a k-dimensional alignment matrix is con-
structed, one dimension for each sequence. Each cell in the internal area of the matrix has
2k _1 predecessors, and each transition u — v corresponds to a possible multiple alignment
column ¢, weighted by its corresponding alignment score cost(u — v) = costgp(c). The
optimal alignment problem translates to the problem of finding a path that minimizes the
path weight, from the start cell vg = (0,0,...,0) to the sink cell vg = (|s1],]|s2],. .-, |sk|)-
The matrix is schematically illustrated in Figure 7.3 for k = 3 sequences.

Now we can return to the universal alignment algorithm from Chapter 5, here given in
its dissimilarity (cost) version: For each cell v of the alignment matrix, compute in an
appropriate order the dissimilarity value

D(v) = uexgrlig(v){D(u) + cost(u — v)}. (7.1)

Applied to the k-dimensional alignment matrix, the algorithm allows to compute optimal
multiple alignments.

Space and time complexity. The space complexity of this algorithm is given by the size
of the k-dimensional alignment matrix. Obviously, this is O(nins - - - ng) which is in O(n)
if n is the maximum sequence length.

o4

7.6 A Guide to Multiple Sequence Alignment Algorithms

The time complexity is even higher, since at each internal vertex where the sum-of-pairs
cost is computed a minimization is taking place over 2¥ — 1 predecessor cells. Hence, the
total time complexity (for homogeneous gap costs) is O(n* - 2% - k2). (For affine gap costs,
the time complexity rises even more.)

While the time may be tolerable in some cases, the exponentially growing space complexity
does not permit to run the algorithm on more than, say, six or seven typical protein
sequences.

7.6 A Guide to Multiple Sequence Alignment Algorithms

As mentioned before, the sum-of-pairs multiple alignment problem is NP hard and all
known exact algorithms have running times exponential in the number of sequences; thus
aligning more than e.g. seven sequences of reasonable length is problematic. Even worse,
from a biological point of view, tree alignment (see Chapter 8) should be the preferred
choice, while its computational complexity is even higher than that of sum-of-pairs align-
ment.

Since in practice, one nevertheless needs to produce multiple alignments of (sometimes)
hundreds of sequences, heuristics are required: Progressive alignment methods, dis-
cussed in Section 8, pick two similar sequences (or existing alignments) and align them
to each other, and then proceed with the next pair, until only one alignment remains.
These methods are by far the most widely used ones in practice. Another class of heuris-
tics, called segment-based methods, first identify (unique) conserved segments and then
chain them together to obtain multiple alignments.

There are, however, also some speedups possible when we stick to the original model of
sum-of-pairs multiple alignment. One, according to an idea of Carrillo and Lipman (1988),
is able to reduce the search space considerably in many practical cases, while still guaran-
teeing to find an optimal solution. Another one, the center-star method (Gusfield, 1993),
is a simple 2-approximation, that means it is a method that no longer guarantees to find
an optimal solution, but whose result is never more than a factor of two higher than the
best possible solution. Finally, there is also a divide-and-conquer multiple alignment algo-
rithm (Stoye, 1998) that does not come with any guaratees, but produces quite reasonable
results in practice.

55

8 Tree Alignment and Progressive
Alignment

From a biological point of view, sum-of-pairs scores are not very well motivated if the
sequences under study originate from species that are related by a phylogenetic (evolu-
tionary) tree. An alternative are models where the score reflects the tree-like relationship
between the sequences. In this chapter we will discuss such a model, tree alignment,
and a more pragmatic heuristic constructing multiple alignments in a tree-like fashion,
progressive alignment.

8.1 Definition of Tree Alignment

To define the tree score of a multiple alignment, we assume that there additionally exists
a given tree T (representing evolutionary relationships) with K nodes, whose k leaves rep-
resent the given sequences and whose K — k internal nodes represent “deduced” sequences.
The extended alignment A hence contains not only the given sequences s1, s9, ..., Sg, but
also the (initially unknown) internal sequences s 1, ..., Sk that must be found or guessed.
A typical scenario is that the sequences at the leaves are orthologous proteins from differ-
ent species whose phylogenetic relationship is well known, such as in Figure 8.1. Then the
task is to find sequences at the inner nodes and an alignment of all sequences together,
from which then the desired alignment of the leaf sequences is extracted.

human monkey rat mouse butterfly

Figure 8.1: A phylogenetic tree

First we define the alignment cost for a given tree and alignment.

o7

8 Tree Alignment and Progressive Alignment

Definition 35 The tree alignment cost of an extended alignment A is the sum of the
pairwise costs of all pairs of sequences that are connected by an edge in the tree:

cost(TQe(A) = Z costo (W{pg}(A)),
(p,9)€E(T)

where E(T) is the set of edges of T'. (Clearly, as before, one can define the tree alignment
score in a similar way.)

The tree alignment problem is now formally stated as follows.

Problem 36 (Tree Alignment Problem) Given a tree T' = (V, E) that has k sequences

s1,. .., Sk attached to its leaves and a pairwise alignment cost function costs, find sequences
Sk+1,-- -, SK t0 be attached to the internal nodes of T' and an alignment A of the sequences
S1,...,8K such that cost(TQe(A) is minimum.

The rationale behind tree alignment is that an alignment that minimizes the number of
mutations along the branches of this tree probably best reflects the true evolutionary his-
tory and hence is most likely to be the correct one. This rationale is called the parsimony
principle, and the sequences attached at internal nodes are called a most parsimonious
assignment. (Obviously there is no guarantee that the most parsimonious assignment is
the biologically correct one, and it can even be shown that in some special cases the most
parsimonious assignment is likely to be wrong. In the field of phylogenetic tree studies
that we are entering here, a long debate has been carried out about such topics, but that
is another story.)

Example 37 Consider sequences s; = LCD, ss = LVCR, s3 = VC, s4 = LC and the
following tree with four leaves and two branching nodes:

(root)

S5 56

s1 = LCD so =LVCR s3=VC s4 = LC

If the sequences at the internal nodes are chosen as s5 = LVCD and s¢ = LV C and as
pairwise cost function costy the unit cost function is used, then the following alignment

L — C D
L'V C R
VC
A=17. - ¢ _
L V C D
L'V O —

58

8.2 Solving the Tree Alignment Problem

has cost

Ney

Tree

cos (A4)

= COStQ(ﬂ'{L5} (A)) + costy (71'{275} (A)) + costy (7"{3,6} (A)) + costo (7r{476} (A4))
+ costa (75,61 (A4))

= 1+1+1+1+1

= b.

To find the sequences s; and sg achieving an overall optimal alignment is not so easy
because of gaps. The next section explains a strategy. <

8.2 Solving the Tree Alignment Problem

The similarity to sum-of-pairs alignment already indicates that tree alignment may also
be NP-hard, and this is indeed the case (Elias, 2006). However, for a single symbol the
problem is easy, as we will see in Section 8.2.1. The general case is then handled in
Section 8.2.2.

8.2.1 Fitch’s Algorithm

Before we study the tree alignment problem itself, we first consider the following simpler
problem:

Problem 38 (Minimum Mutation Problem) Given a phylogenetic tree T' with characters
attached to the leaves, find a labelling of the branching nodes of T with characters such
that the overall number of character changes along the edges of T' is minimized.

Here, the so-called Fitch Algorithm (Fitch, 1971) can be used, which we describe in
its original version for the unit cost function and a rooted binary tree T'. (If the tree is
unrooted, a root can be arbitrarily chosen, the algorithm will always give the same result.)

1. Bottom-up phase: Assign to each internal node a set of potential labels.
e For each leaf ¢ set:
R; = {x;} (x; = character at leaf 7)

e Bottom-up traversal of tree (from leaves to root)
For internal node ¢ with children j, k, set

o RjﬂRk, iijﬂRk#(b
f R; URy, otherwise.

2. Top-down phase: Pick a label for each internal node.

e Choose arbitrarily:

99

8 Tree Alignment and Progressive Alignment

Troot = some T € Ryoot

e Top-down traversal of tree (from root to leaves)
For internal node j with parent i, set

some x € R, otherwise.

{l’i, if x; € Rj
T =

See Figure 8.2 for an example of the Fitch Algorithm.

A C TT T A- A G

Figure 8.2: TIllustration of the Fitch Algorithm for ¥ = {A,C,G,T,-}. The characters
assigned during the top-down phase are underlined. The total number of
character changes is 5.

The analysis of the Fitch Algorithm is easy: It takes O(k|X|) time and space, because the
number of internal nodes is bounded by k£ — 1 and each step takes O(|X]) time.

Note 1: A bottom-up traversal of a tree can be implemented by a post-order traversal
that starts at the leaves of the tree and at each internal node recursively traverses the
subtrees before visiting the node itself.

Note 2: A top-down traversal of a tree can be implemented by a pre-order traversal (also
called depth-first traversal) that starts at the root of the tree, and for each internal node
recursively visits the node first and then traverses the subtrees.

8.2.2 Sankoff’s Algorithm

Now we return to the general case, the tree alignment problem (Problem 36). An expo-
nential-time exact algorithm solving it is due to Sankoff (1975). It is conceptually similar
to the algorithm described in Section 7.5 for the sum-of-pairs cost in that it also acts on a
k-dimensional alignment matrix. The main difference is that in each step, when the cost
of one of the 2¥ — 1 predecessor nodes is computed, this is not the SP alignment cost of
the preceding letters in the k sequences, but it is the tree alignment cost. Since this cost
includes letters from the (initially unknown) sequences Sk, ..., Sk, optimal choices for
these have to be computed on the fly, and that is exactly where the Fitch algorithm comes
in.

60

8.3 Generalized Tree Alignment

Technical details of Sankoff’s algorithm go beyond the scope of this class. We just state
that the time complexity is O(n*2¥k|X|), which is even higher than for sum-of-pairs align-
ment because of the inner optimization generating the new sequences at the inner nodes
of T. Knudsen (2003) shows how this algorithm can be generalized to affine gap costs.

8.3 Generalized Tree Alignment

Although Tree Alignment (Problem 36) is already NP-hard, there exists an even harder
problem, the generalized tree alignment problem. Recall that in the tree alignment
problem the tree T is given. In practice, however, the tree is often unknown and an
additional optimization parameter. Thus the problem (in its distance version) is as follows.

Problem 39 (Generalized Tree Alignment Problem) Given sequences s, ..., sk, find
1. atree T,
2. sequences Sgi1,--.,SKk to be assigned to the internal vertices of T', and
3. a multiple alignment A of the sequences s1,..., Sk,
(T)

such that the tree alignment cost costr, . (A4) is minimum among all such settings.

Tree

Various attempts have been made to address this problem, but only with very limited
practical success.

The first way is conceptually simple, but very inefficient: Just apply Sankoff’s algorithm
to all tree topologies (of which there are exponentially many in k) and pick the best one.
Clearly, this is feasible only for very small k.

An alternative approach is to solve the Steiner tree problem in sequence space. Therefore
the generalized tree alignment problem is equivalently formulated as follows:

Problem 40 Given the complete weighted graph whose vertices V' represent the infinite
set 2* of all sequences over ¥ and whose edges have as weights the edit distance between
the connected vertices (the so-called sequence space) and a finite subset V/ C V, find a
tree T with vertices V" C V such that V' C V" and the total weight of the edges in T is
minimum. Such a tree is called a Steiner tree for V.

For two-letter sequences over the alphabet ¥ = {A,C,G, T}, an example following this
approach is visualized in Figure 8.3.

Again, we do not give the technical details of an algorithm solving the generalized tree
alignment problem in this way, but we invite the reader to observe the elegance of the
approach while also the infeasibility in practice.

61

8 Tree Alignment and Progressive Alignment

Figure 8.3: The generalized tree alignment problem for two-letter sequences as a Steiner
tree problem in sequence space. Given are the sequences AA, CA, AT, and GC.
The tree shown contains one additional internal “Steiner” node AC and has
total cost 4.

8.4 Progressive Alignment

The progressive alignment method is a fast heuristic multiple alignment method. The
most popular multiple alignment programs follow this strategy.

The basic idea of progressive alignment is that the multiple alignment is computed in a
progressive fashion. In its simplest version, the given sequences si, So, ..., S, are added
one after the other to the growing multiple alignment, i.e., first an alignment of s; and so
is computed, then s3 is added, then s4, and so on.

In order to proceed this way, a method is needed to align a sequence to an already given
alignment. Obviously, this is just a special case of aligning two alignments to each other,
and in Section 8.4.1 we will discuss a simple algorithm to do this.

In addition, the order in which the sequences are added to the growing alignment can
be determined more freely than just following the input order. Often, the most similar
sequences are aligned first in order to start with a well-supported, error-free alignment.

A more advanced version of progressive alignment that is motivated by the tree alignment
approach described above is the progressive alignment along the branches of a rooted
alignment guide tree. Like in tree alignment, a phylogenetic tree is given that carries
the given sequences at its leaves. However, unlike in tree alignment, no global objective
function is optimized, but instead multiple alignments are assigned to the internal nodes
in a greedy fashion bottom up, from the leaves towards the root of the tree. Figure 8.4
illustrates this procedure.

Benefits of the progressive approach are:

e The method is more efficient than the exact tree alignment algorithm. Most algo-
rithms following this strategy have a quadratic time complexity O(n?k?).

e Since the sequences near each other in the guide tree are supposed to be similar,
in the early stages of the algorithm alignments will be calculated where errors are
unlikely. This will reduce the overall error rate.

62

8.4 Progressive Alignment

A(1,2,3,4,5)

S1 S92 S3 S4 S5

Figure 8.4: Progressive alignment along the branches of a phylogenetic tree. Sequences
s1 and s9 are aligned, giving alignment A2, Sequences s4 and s5 give A(4?)
which then is aligned with s3 giving A®45)_ Finally, aligning A(1:2) and A(G:45)

gives the multiple alignment of all sequences, A(1:2:3:45),

e Motifs that are family specific will be recognized early, and so they won’t be super-
posed by errors of remote motifs.

However, there are also a few potential disadvantages:

e Early errors can not be revoked, even if further information becomes available in a
later step in the overall procedure, see Figure 8.5. Feng and Doolittle (1987) coined
the term “once a gap, always a gap” to describe this effect.

e Because of its procedural definition, the progressive alignment approach does not
optimize a well-founded global objective function. This means that it is difficult
to evaluate the quality of the result, since there is not a single value that is to be
maximized or minimized and can be compared to the result of heuristic approaches.

e The method relies on the alignment guide tree. The tree must be known (or com-
puted) before the method can start, and an error in the tree can make a large
difference in the resulting alignment. Since multiple alignments are often used as
a basis for construction of phylogenetic trees, here we have a typical “chicken and
egg” problem, and in phylogenetic analyses one should be especially careful not to
obtain trivial results with progressive alignments.

8.4.1 Aligning Two Alignments

An important subprocedure of the progressive alignment method is to align two existing
multiple alignments.

63

8 Tree Alignment and Progressive Alignment

ACG ATTG AGAG ACTG ACAG

Figure 8.5: In a strict bottom-up progressive computation, it cannot be decided at the
time of computing the alignment denoted with the asterisk (x) if it should be
(47§88 or (4$7%). Only the rest of the tree indicates that the second variant
is probably the correct one.

Since the two alignments are fixed, this is a pairwise alignment procedure, with the only
extension that the two entities to be aligned are not sequences of letters but sequences of
alignment columns.

Therefore, it is necessary to provide a score for the alignment of two alignment columns.
One way to define such an extended score is to add the scores of all pairwise (letter-letter)
scores between the two columns.

For example, consider the two alignment columns

wi (1)

In a unit cost scenario with matches of cost cost(c, ¢) = 0 and mismatches and indels of cost
cost(c,d’) = 1fore,d € BU{—}, ¢ # ¢, an alignment of these two columns would be scored
cost (A, A)+cost(A, G)+cost(G, A)+cost(G, G)+cost(T, A)+cost(T, G)+cost (-, A)+cost(-,G) =
0+141404+14+1+1+1 = 6. In general, the cost of aligning a column A; of an alignment
A with k4 rows and a column B; of an alignment B with kp rows is

H Q=

cost(A;, Bj) = Z cost(4;[p], Bj[q])-
pe{l,....ka}
qe{l’"'ka}

Based on such a column-column score, the dynamic programming algorithm can be per-
formed as in the case of the alignment for two sequences.

The following example illustrates the procedure for the alignment of
T A G AT C A G
A1_<G- c) and A2_<AGC - G>

64

8.5 Software for Progressive Alignment

using the unit cost model described above.

e [[@) (&) (4)[(&)]
e o] 4] 8 | 12]14]18
(5)][4] 4] 6 [10]12] 16
6] 6] 8 7...

(€) | 10

The total time complexity of the algorithm is O(nanpkakp) where ng and np are the
alignment lengths and, as above, k4 and kp are the numbers of rows in the alignments
A and B, respectively. However, it can be reduced to O(nanpg) time if the alphabet

Y = (e1,c2,...,¢5) is of constant size o and an alignment column A; is stored as a vector
(Aeyy Geys - -+ Qe, s a-) Where a, is the number of occurrences of character ¢ in A;, such that
the cost of aligning two columns A; = (ac,, ac,, - - -, e, ,a-) and Bj = (be,, be,, . .., b, ,b-)

can be written as
cost(A;, Bj) = Z e be - cost(c,).
¢, eXU{-}

Adding affine gap costs is possible, but the exact treatment is rather complicated, in fact
NP-hard (Kececioglu and Starrett, 2004). That is why usually heuristic approaches are
used for affine gap costs in the alignment of two alignments.

8.5 Software for Progressive Alignment

8.5.1 The Family of Clustal Programs

The series of Clustal programs was developed by Julie Thompson and Des Higgins. The
initial version was Clustal V (Higgins and Sharp, 1992), followed by Clustal W (Thompson
et al., 1994). Later, an X windows interface was introduced, the package now being called
Clustal X (Thompson et al., 1997). The newest and presumably last member of this family
is Clustal Q (Sievers et al., 2011).

In principle, the Clustal algorithm follows quite precisely the idea of progressive multiple
alignment along a guide tree as described above, although the actual implementation is
enhanced by several features regarding the optimized computation of a reasonable guide
tree and the automatic selection of scoring schemes, which we do not discuss here.

The steps of the algorithm are the following:

1. By pairwise comparison of all input sequences s1, s9, ..., sg, compute all pairwise
optimal alignment similarity scores s(s;, s;).

2. From these scores, compute an alignment guide tree using the Neighbor Joining
algorithm (Saitou and Nei, 1987).

3. Finally, progressively compute the multiple alignment, guided by the branching order
of the tree.

65

8 Tree Alignment and Progressive Alignment

Clustal Q includes much expert knowledge (optimized use of different protein scoring
matrices, affine gap costs, etc.), so that the alignments are not only quickly computed
but also of high quality, often better than those just optimized under some theoretical
objective function. This and its easy-to-use interface are probably the main reasons for
the great success of the program.

8.5.2 T-COFFEE

Another method to compute high-quality multiple alignments is the program T-COFFEE
(Notredame et al., 2000). The procedure consists of three steps.

In the first step, a primary library of local and/or global alignments is computed. These
alignments can be created in any way. Sequences can be contained in several alignments,
and the different alignments do not need to be consistent with each other. The primary
library can consist, for example, of optimal pairwise global alignments, optimal pairwise
local alignments, suboptimal local alignments, heuristic multiple alignments, possibly sev-
eral ones computed with different scoring schemes, etc. In the default setting, T-COFFEE
uses Clustal W to create one global multiple alignment and also to compute global pairwise
alignments for all pairs of sequences.

Then, in the second phase, the alignments from the primary library are combined to
produce a position-specific library that tells for each pair of aligned sequence positions
from the primary library the strength of its weight, i.e., the number of alignments of the
primary library that support the pairing of these two positions. An advantage is that in
this extension phase no substitution matrix is used, and so different scoring schemes from
the construction of the primary library will not lose their influence on the final result.

In the third phase, ideally one would like to compute a maximum weight alignment (Kece-
cioglu, 1993) from the (weighted) alignments of the extended library. Unfortunately this
is a computationally hard problem. This is why a heuristic is used that is similar to the
progressive alignment strategy described in the previous section.

8.5.3 MUSCLE

MUSCLE is public domain multiple alignment software for protein and nucleotide se-
quences. MUSCLE stands for Multiple Sequence Comparison by Log-Expectation. It
was designed by Robert C. Edgar (Edgar (2004a), Edgar (2004b)) and can be found at
http://www.driveb.com/muscle/.

MUSCLE performs an iterated progressive alignment strategy and works in three stages.
At the completion of each stage, a multiple alignment is available and the algorithm can
be terminated.

Stage 1: Draft progressive The first stage builds a progressive alignment, similar to
Clustal.

66

8.5 Software for Progressive Alignment

Similarity measure The similarity of each pair of input sequences is computed, ei-
ther using k-mer counting or by constructing a global alignment of the pair and
determining the fractional identity.

Distance estimate A triangular distance matrix D is computed from the pairwise
similarities.

Tree construction A tree 7) is constructed from D; using UPGMA or neighbor-
joining, and a root is identified.

Progressive alignment A progressive alignment is built by a post-order traversal of
T1, yielding a multiple alignment M SA; of all input sequences at the root.

Stage 2: Improved progressive The second stage attempts to improve the tree and builds
a new progressive alignment according to this tree. This stage may be iterated.
The main source of error in the draft progressive stage is the approximate k-mer dis-
tance measure, which results in a suboptimal tree. MUSCLE therefore re-estimates
the tree using the Kimura distance, which is more accurate but requires an align-
ment.

Similarity measure The similarity of each pair of sequences is computed using frac-
tional identity computed from their mutual alignment in the current multiple
alignment.

Tree construction A tree 15 is constructed by computing a Kimura distance matrix
D5 (Kimura distance for each pair of input sequences from M S A;) and applying
a clustering method (UPGMA) to this matrix.

Tree comparison Compare 177 and 15, identifying the set of internal nodes for which
the branching order has changed. If Stage 2 has executed more than once, and
the number of changed nodes has not decreased, the process of improving the
tree is considered to have converged and iteration terminates.

Progressive alighment A new progressive alignment is built. The existing alignment
is retained of each subtree for which the branching order is unchanged; new
alignments are created for the (possibly empty) set of changed nodes. When
the alignment at the root (M SAs) is completed, the algorithm may terminate,
repeat this stage or go to Stage 3.

Stage 3: Refinement The third stage performs iterative refinement using a variant of
tree-dependent restricted partitioning (Hirosawa et al., 1995).

Choice of bipartition An edge is deleted from T3, dividing the sequences into two
disjoint subsets (a bipartition). (Bottom-up traversal)

Profile extraction The multiple alignment of each subset is extracted from the cur-
rent multiple alignment. Columns containing no characters (i.e., indels only)
are discarded.

Re-alignment A new multiple alignment is produced by re-aligning the two multiple
alignments to each other using the technique described in Section 8.4.1 on
page 63 (Aligning two Alignments).

67

8 Tree Alignment and Progressive Alignment

Accept/reject The SP-score of the multiple alignment implied by the new align-
ment is computed.

MSAs (accept), if Ssp(MSA) > Ssp(MSA;)

MSAy =
MSA; (discard), otherwise.

Stage 3 is repeated until convergence or until a user-defined limit is reached.
Visiting edges in order of decreasing distance from the root has the effect of
first realigning individual sequences, then closely related groups

68

9 Genome Assembly

As long as there is no technology to sequence a chromosome from telomere to telomere
in one piece, genome assembly will remain one of the most important sequence analysis
tasks in bioinformatics. Informally, the genome assembly problem is easy to phrase:

Definition 41 (Genome Assembly, informal version) Given a (usually large) set of DNA
sequencing reads, find a genome sequence (or several chromosomes in case of a multichro-
mosomal species) that contains all the reads.

This problem formulation is clearly underspecified, since it does not explain how exactly
the genome sequence relates to the reads and what other properties it should have. An
extreme in the other direction is the shortest common superstring (scs) problem:

Definition 42 (Genome Assembly, scs version) Let S be a set of finite strings, find a
shortest sequence g such that each s € S is a substring of g.

This version is unrealistic because in real data we can not expect that every sequenced
read is an error-free extract from the genome. Moreover, there may be regions in the
genome that are not covered by any reads and therefore may produce gaps in the final
output sequence.

Moreover, the shortest common superstring problem is NP-hard (Maier and Storer, 1977),
and more robust variants of it, that may be applicable here, are even more difficult to
solve optimally. Therefore usually heuristic methods are applied, and in this chapter we
will discuss the two most relevant of these.

9.1 Overlap, Layout, Consensus

The first practical genome assemblers all followed this scheme, which has been refined
over the years. Here we explain the general ideas of the three steps: Overlap, Layout,
Consensus (OLC). Several variants have been designed and implemented in many genome
assembly software tools. Such details are not part of these lecture notes.

Overlap. Given the input set S = {si,...,s;} of sequencing reads, compute overlaps
between all pairs (s;, s;), and between all pairs (s;, §;), 1 <i < j < k. (The second
pair is necessary because from a sequencing read it is not possible to see which DNA
double-strand it originates from. Therefore both possible ways of overlap have to
be tested.) The method of choice for these comparisons is free end gap alignment
(Section 5.3), and usually also some filter is applied so that only substantial overlaps
with a high score are recorded in a set of overlaps O.

69

9 Genome Assembly

Layout. A weighted graph data structure is computed, called the overlap graph G(S, O),
with the following components:

e for each string s € S, G(S,0) contains two vertices s* (tail) and s* (head),
connected by a directed read edge from st to s of weight I(s), where I(s) is
the length of read s;

e for each overlap o € O, G(S, O) contains an undirected overlap edge of weight
—ovl(0) connecting the two vertices representing the overlapping read extrem-
ities, where ovl(0) is the overlap length of overlap o.

The overlap phase ends with some way to extract a set of disjoint long paths from
this graph that will correspond to contiguous chromosome regions (contigs). A
popular way is to use some kind of spanning tree heuristic for this step. The paths
are collected in a set of contigs C.

Consensus. For each contig ¢ € C' compute a consensus sequence, usually by performing
some multiple alignment procedure involving the read sequences along the path of
the contig.

An important extension of the method arises from the fact that many sequencing tech-
niques allow to obtain pairs of reads (mate pairs or paired-end reads), for which then their
approximate distance and their relative orientation on the chromosome is known. This in-
formation can be included in the sequencing procedure, either in form of additional edges
in the overlap graph, or as a heuristic for error correction during a postprocessing step.
Details are omitted here.

A rough analysis of the OLC method is the following under the assumption that we have
given k reads, each of length up to n: The overlap phase takes O(k?n?) time and O(k?+n)
space to compute O(k?) free end gap alignments, each in time O(n?) and space O(n). The
layout and consensus phases are not so easy to analyse, but it is clear that in the layout
phase the overlap graph requires very much memory because it has to be stored in memory
all at once. Therefore it is often a challenge to run an OLC assembler on very large, for
example eukaryotic datasets.

9.2 Assembly Using de Bruijn Graphs

When in the early 2000s new “next generation” sequencing technologies were developed,
producing much faster and cheaper than before huge datasets of hundreds of millions or
even billions of (initially quite short) reads, it became impossible to assemble them by
the OLC method, in particular because the overlap graph, that has two vertices for each
read and potentially a quadratic number of edges, required too much memory. This led
to the development of a new line of assembly algorithms whose memory consumption is
independent of the input data size.

The idea is to construct a de Bruijn subgraph (see Section 2.4) of all k-mers present in
the reads. Most methods also add the k-mers of the reverse complements of all reads,
again because it is unknown from which DNA double-strand a read originates. The de

70

9.3 Hybrid Assembly

Bruijn graph is then usually cleaned by removing areas that are not well supported by the
reads, i.e. have a low coverage. Also small “bubbles” that often originate from sequencing
errors are removed (“flattened”). Finally, like in the layout phase of the OLC method,
long non-branching paths are extracted and reported as contigs of the genome sequence.

9.3 Hybrid Assembly

With the advent of long read sequencing (Pacific Biosciences, Oxford Nanopore Tech-
nologies) in the late 2010s, the demand for new genome assembly techniques arose again.
Genome projects now often produced two sets of reads, a large number of short reads
with very high sequence correctness, and a smaller number of long reads to assist in the
layout phase. To accommodate such datasets, so-called hybrid assemblers have been
developed that can combine both types of reads. Different strategies can be followed:

e Gap filling and assembly upgrade: Assemble the short reads in the traditional way
using de Bruijn graphs and then stitch together the contigs using the long reads.

e Long read only with read error correction: Map the short reads to the long reads in
order to correct sequencing errors and then assemble the corrected long ones using
variants of OLC assembly.

e Long read only with genome correction: Assemble the long reads by an OLC as-
sembler and then map the short reads to the resulting genome in order to correct
sequencing errors.

Note that these are only the general strategies. Details are omitted and differ widely
between the individual implementations. The development of new genome assemblers
is still an active area of research, and with each new sequencing technology also new
assemblers have to be developed.

For example, due to their context information, very long reads are more and more used to
directly assemble the two haplotypes of a diploid genome separately, which is very useful
in population genomic studies and to associate diseases to certain genomic loci.

71

10 Suffix Trees

10.1 Motivation

The amount of sequence information in today’s databases is growing rapidly. This is
especially true for the domain of genomics: Past, current and future projects to sequence
large genomes produce terabytes of sequence data, mainly DNA sequences and protein
sequences. To make use of these sequences, larger and larger instances of string processing
problems have to be solved.

While the sequence databases are growing rapidly, the sequence data they already contain
does not change much over time. In this situation, indexing methods are applicable. These
methods preprocess the sequences in order to extract relevant information and store this
in form of an index.

There are two basic approaches to index-based database searching.

1. In the first (so-called pattern-index) approach, the database (of size N) is com-
pletely examined for every query (of size m). Each query, however, can be pre-
processed as soon as it becomes known. This means that the running time of such a
method is at least O(m + N) for each query, even if no similar sequences are found.
This is in practice much faster than O(mNN) time for a full alignment, and it allows
that the database changes after each query (e.g. new sequences might be added).
BLAST (Section 6.4) is a well-known database search program that works in this
way.

2. The second (text-index) approach preprocesses (indexes) the database before a
number of queries are posed, assuming that the database changes only rarely be-
cause indexing takes time: Even if indexing time is only linear in the database size,
the constant factor is usually quite high. On the other hand the index allows to
immediately identify only those regions of the database that are potentially simi-
lar to the query. If these do not exist, the time spent for each query can become
as small as ©(m). Early methods using a text-index were based on the g-gram
lemma (Section 6.2), and many more have been developed since, mostly based on
the datastructures introduced in subsequent chapters.

The following table shows time complexities for pattern-index and text-index database
searching if no similar regions are found. If there are such regions, they have to be
examined, of course, which adds to the time complexities of the methods. However, the
goal is to spend as little time as possible when there are no interesting similarities.

73

10 Suffix Trees

Method ‘ Preprocessing Querying ‘ Total 1 query Total k& queries
pattern index | O(m) O(N) O(m+ N) O(k(m+ N))
text index O(N) O(m) O(N 4+ m) O(N + km)

It is clear that text indexing pays off as soon as the number of queries k on the same
database becomes reasonably large.

The suffix tree is a basic index data structure for sequences that can be used both as a
pattern index and as a text index. In this chapter we introduce the concept of suffix trees
and show their most important properties, and in the next one (Chapter 11) we take a
look at some applications of biological relevance.

Subsequently, in Chapter 12, we shall introduce the data structures suffix array and
enhanced suffix array, which share many of the properties of suffix trees, but have
a smaller memory footprint and perform better in practice. Even smaller is the memory
footprint of the Burrows-Wheeler Transformation that follows in Chapters 13 and 14.

10.2 An Informal Introduction to Suffix Trees

Let us consider a constant alphabet ¥ and a string s € X™. Think of s as a database of
concatenated sequences, or a genome, etc.

In order to answer substring queries about s, e.g. to enumerate all substrings of s that
satisfy certain properties, it is helpful to have an index of all substrings of s. We already
know that there can be O(n?) distinct substrings of s, i.e., too many to represent them
all explicitly with a reasonable amount of memory. We need an implicit representation.

Observation 43 Each substring of s is a prefix of a suffix of s, and s has only n suffixes,
so we can consider an index consisting of all suffixes of s.

Now, let $ ¢ ¥ be a special character, sometimes called sentinel!, appended to the end
of s, so that no suffix is a prefix of another suffix. For example, if s = cabca, the suffixes
of cabca$ are

$,a$, ca$,bca$, abca$, cabca$.

This list has n + 1 = ©(n) elements, but its total size is still ©(n?) because there are n/2
suffixes of length > n/2.

It is a central idea behind suffix trees to identify common prefixes of suffixes, which
is achieved by lexicographically sorting the suffixes. This naturally leads to a rooted tree
structure, as shown in Figure 10.1.

Note the effect of appending the sentinel $: In the tree for cabca$, every leaf corresponds
to one suffix. Without the sentinel, some suffixes can end in the middle of an edge or at
an internal node. To be precise, these would be exactly those suffixes that are a prefix
of another suffix; we call them nested suffixes. Appending $ ensures that there are no

Tt guards the end of the string. Often we assume that it is lexicographically smaller than any character
in the alphabet.

74

10.3 A Formal Introduction to Suffix Trees

Figure 10.1: Suffix trees of cabca (left) and of cabca$ (right). In the left tree, the hol-
low circles indicate suffixes that are also prefixes of other suffixes (nested
suffixes). In the right tree, as a result of appending the sentinel character,
this is no longer the case. Moreover, the leaves have been annotated with the
starting positions of the suffixes.

nested suffixes, because $ does not occur anywhere in s. Thus we obtain a one-to-one
correspondence of suffixes and leaves in the suffix tree.

Note the following properties for the suffix tree T of s$ = cabca$, or the larger example
shown in Figure 10.2.

e There is a bijection between suffixes of s$ and leaves of T

e Fach internal node has at least two children.

Each outgoing edge of an internal node begins with a different letter.

Edges are annotated with substrings of s$.

Each substring s’ of s$ can be found by following a path from the root down the tree
for |s'| characters. Such a path may end in the middle of an edge, not necessarily at
a leaf or at an internal node.

We now give more formal definitions and shall see that a “clever” representation of a suffix
tree needs only linear, i.e., O(n) space. Most importantly, we cannot store strings at the
edges, because the sum of their lengths is still O(n?). Instead, we will store references
to substrings of the input string s$, which is always possible since each edge label is a
substring of s$, as noted above.

10.3 A Formal Introduction to Suffix Trees

Definitions. Let X be a constant alphabet. A X-tree, also called trie, is a rooted tree
(see Section 2.3) whose edges are labeled with a single character from ¥ U {$} in such a
way that no node has two outgoing edges labeled with the same letter.

75

10 Suffix Trees

A B >
B O @ Q
C A
® C
A _RQ A C B
C C B C) 0
$ B A B C ®
o O O A
C B B B Q
B AC A B C Q
A c B O C
C A AC A
c B c/ A $/8/ ¢ 5 c|®\ B
A C B c A B Cl ¢ B . B
B/ ¢ c/ ¢ ¢/l a c c B
C B A B B A B B C $\ A
c $ B A B $\ a c
C €/ o/ 8/ c Al c|c
c| C A
A $ C A B C B
NV B[A Al A| B B
B B C C C
B/ C c| B B c
c c $ cl ¢ A
C A
c/ B/ A $ $
A Al B B
A B A c
c B C
C C C C C
C B A
$ A B
B B o Al % c C
C C c C B
B B
$ $ c $ c $ C
$ $ $
O O O O O O O O O O O O é O O O O O O
21 2 1 14 9 17 4 8 3 19 12 15 6 20 1 0 13 16 7 18 5

Figure 10.2: The suffix tree of CABACBCBACABCABCACBCS.

A X t-tree is a rooted tree whose edges are labeled with non-empty strings over ¥ U {$}
in such a way that no node has two outgoing edges whose labels start with the same letter.
A YT-tree is compact if no node (except possibly the root) has exactly one child (i.e., all
internal nodes have at least two children).

For a node v in a Y- or ¥ T-tree T, we call string(v) the concatenation of the edge labels
on the unique path from the root to v. We define the string depth stringdepth(v) :=
|string(v)|. In a X-tree, this is equal to depth(v), but in a ¥*-tree, the depth of a node usu-
ally differs from its string depth because one edge can represent more than one character.
We always have stringdepth(v) > depth(v).

For a string z, if there exists a node v with string(v) = z, we write node(x) for v.
Otherwise node(x) is undefined. Sometimes, one can also find Z written for node(x) in
the literature. Of course, node(e) = £ is the root r.

We say that T displays a string x € ¥* if can be read along a path down the tree,
starting from the root, i.e., if there exists a node v and a (possibly empty) string y such
that xy = string(v). We finally define the words displayed by T' by words(T") := {x |
T displays x}.

The suffix tree of s is the compact X -tree T' with words(T) = {s’ | s’ is a substring of s}.
As mentioned above, we often consider the suffix tree of s$ for some sentinel character

76

10.4 Space requirements of Suffix Trees

$ ¢ X, where each suffix ends in a leaf.

An edge leading to an internal node is an internal edge. An edge leading to a leaf is a
leaf edge.

Generalized suffix trees. In many applications, we need a suffix tree built from more than
one string (e.g. to compare two genomes). There is an important difference between the
set of k suffix trees (one for each of k strings) and one (big) suffix tree for the concatenation
of all k strings. The big suffix tree is very useful, the collection of small trees is generally
useless!

When we concatenate several sequences into a long one, however, we need to make sure to
separate the strings appropriately in such a way that we do not create artificial substrings
that occur in none of the original strings.

For example, if we concatenate ab and ba without separating them, we would get abba,
which contains bb as a substring, but bb does not occur in either of the original strings.

Therefore we use additional unique sentinel characters $1,$o,... that delimit each string.

Definition 44 Given strings s1,...,s; € X%, the generalized suffix tree of sq,...,s; is
the suffix tree of the string s1$152%2 ... 5,85, where $; < $5 < --- < $;, are distinct sentinel
characters that are not part of the underlying alphabet 3.

In the case of only two strings, we usually use # to delimit the first string for convenience,
thus the generalized suffix tree of s and ¢ is the suffix tree of s#t$.

10.4 Space requirements of Suffix Trees

Note that, in general, the suffiz trie T of a string s of length n contains O(n?) nodes. We
now show that the number of nodes in the suffiz tree T of s is linear in n.

Lemma 45 The suffix tree T of a string of length n has at most n — 1 internal nodes.

Proof. Let L be the number of leaves, let I be the number of internal nodes, and let E be
the number of edges in T'. Each leaf and each internal node except the root has exactly one
incoming edge; thus £ = L 4+ I — 1. On the other hand, each internal node is branching,
i.e., has at least two outgoing edges; thus F > 2I. It follows that L +1 — 1 > 21, or
I < L—1. Since L < n (there can not be more leaves than suffixes), we have I < n —1
and the lemma follows. Also note that E =L +1—1<2n— 2. O

By the above lemma, there are at most n leaves, n — 1 internal nodes and 2n — 2 edges;
all of these are linear in the string length n. The remaining problem are the edge labels,
which are substrings of s and may each require O(n) space for a total of O(n?). To avoid
this, we do not store the edge labels explicitly, but only two numbers per edge: the start-
and end-position of a substring of s that spells the edge label. The following theorem is
now an easy consequence.

7

10 Suffix Trees

Theorem 46 The suffix tree of a string s of length n can be stored in O(n) space.

Corollary 47 The generalized suffix tree of several strings si,...,sp can be stored in
k

O(X_ |si|) space.
i=1

10.5 Suffix Tree Construction: The WOTD Algorithm

Suffix tree constructions have a long history and there are algorithms which construct
suffix trees in linear time (Weiner, 1973; McCreight, 1976; Ukkonen, 1995; Farach, 1997).

Here we describe a simple suffix tree construction method that has quadratic worst-case
time complexity, but is fast in practice and easy to explain: the Write Only Top Down
(WOTD) suffix tree construction algorithm (Giegerich et al., 2003).

We assume that the input string s$ ends with a sentinel character.

The WOTD algorithm adheres to the recursive structure of a suffix tree. Let u be a
substring of s$ such that node(u) is a branching node in the suffix tree T' of s$. The idea
is that node(u) is evaluated recursively, creating the subtree below node(u) from the set
of all suffixes of s$ that have u as a prefix. To construct this subtree, we need the set

R(node(u)) := {v | uv is a suffix of s$}

of remaining suffixes. To store this set, we would not store the suffixes explicitly, but
only their starting positions in s$. More precisely, we proceed as follows.

1. At first R(node(u)) is divided into groups according to the first character of each
suffix. For any character ¢ € XU{$}, let group(node(u), ¢) := {w | cw € R(node(u))}
be the c-group of R(node(u)).

2.a) If for a particular ¢ € ¥ U {$}, the set group(node(u), ¢) contains only one string w,
then there is a leaf edge labeled cw outgoing from node(u).

2.b) If group(node(u),c) contains at least two strings, then there is an edge labeled cv
leading to a branching node node(ucv) where v is the longest common prefix
(Iep) of all strings in group(node(u),c). This includes that v may be equal to e.
The child node(ucv) has the set of remaining suffixes R(node(ucv)) = {w | vw €
group(node(u), c)}.

The WOTD algorithm starts by evaluating the root from the set of all suffixes of s$, setting
R(node(e)) := {v | v is a suffix of s$}. All internal nodes are then evaluated recursively
in a top-down strategy.

Example 48 Consider the input string s$ = abbabbab$. The WOTD algorithm works as
follows.

At first, the root is evaluated from the set of all non-empty suffixes of the string s$, see
Figure 10.3. The algorithm recognizes three groups of suffixes: the $-group, the a-group,
and the b-group.

78

10.5 Suffix Tree Construction: The WOTD Algorithm

ATV OTOT e
“H~oo o
oo
e
+
A
Q

grou €

Lo NegogdNey
RidedRegexi))

RideaRegeyRe o))
Lijep JegeyiRegey
©“H o

R e e ey

b
b
a
b
b
a
b
$

A0 OO O
OV OoTOoO
oo O
Ho o

-

a
o

»n Y o

Ride e e u ey
AT 0O

00 OO T
ATV OToTOTO
Lo ey

+H oo

s

group
—

grou

Figure 10.3: The write-only top-down construction of the suffix tree for abbabbab$

The $-group is singleton, so we obtain a leaf reached by an edge labeled $.

The a-group contains three suffixes, bbabbab$, bbab$ and b$. (Recall that the preceding
a is not part of the suffixes of the group.) We compute the longest common prefix of the
strings in this group. This is b in our case. So the a-edge from the root is labeled by ab,
and we obtain an unevaluated branching node with remaining suffixes babbab$, bab$ and
$, which is later evaluated recursively.

The b-group of the root contains five suffixes: babbab$, abbab$, bab$, ab$ and $. The
outgoing edge is labeled b, since there is no common prefix among the strings in the
b-group, and the resulting branching node node(b) has five remaining suffixes babbab$,
abbab$, bab$, ab$ and $, which are recursively classified. <

Analysis. The worst case running time of WOTD is O(n?). Consider, for example, the
string s = a™. The suffix tree for s$ is a binary tree with exactly one branching node of
depth i for each i € [0,n — 1]. To construct the branching node of depth i, exactly n — i
suffixes are considered. That is, the number of steps is Z?:_ol (n—1) = Z?Zl j= (";1) €
O(n?).

79

10 Suffix Trees

In the average case, the maximal depth of the branching nodes is much smaller than n—1,
namely O(log, n), where o = |X|. In other words, the length of the path to the deepest
branching node in the suffix tree is O(log, n). The suffixes along the leaf edges are not read
any more. Hence the expected running time of the WOTD construction is O(nlog, n).

WOTD has several properties that make it interesting in practice:

80

e The subtrees of the suffix tree are constructed independently from each other. Hence

the algorithm can easily be parallelized.

The locality behavior is excellent: Due to the write-only-property, the construction
of the subtrees depends only on the set of remaining suffixes. Thus the data required
to construct the subtrees is very small. As a consequence, it often fits into the cache.
This makes the algorithm fast in practice since a cache access is much faster than
the access to the main memory. In many cases, WOTD is faster in practice than
worst-case linear time suffix tree construction methods.

The paths in the suffix tree are constructed in the order they are searched, namely
top-down. Thus one can organize the algorithm such that a subtree is constructed
only when it is traversed for the first time. This would result in a “lazy construction”,
which comes for free in a lazy functional programming language (such as Haskell), but
could also be implemented in an eager imperative language (such as C). Experiments
show that such a lazy construction is very fast in practice in many scenarios.

11 Suffix Tree Applications

11.1 Exact String Matching

Perhaps the most elementary problem in sequence analysis is the following, for which we
have already seen a number of solutions:

Problem 49 (Exact String Matching Problem) Given a text s € ¥* and a pattern p €
>*, what can we say about occurrences of p in s? To be precise, we have to distinguish
between different variants:

1. decide whether p occurs at least once in s (i. e., whether p is a substring of s),
2. count the number of occurrences of p in s,

3. list the starting positions of all occurrences of p in s.

We shall see that, given the suffix tree of s§, the first problem can be decided in O(|p|)
time, which is independent of the text length. The second problem can be solved in the
same time, using additional annotation in the suffix tree. The time to solve the third
problem must obviously depend on the number of occurrences z of p in s. We show in
three steps that it can be solved in optimal O(|p| + z) time.

1. Since the suffix tree for s$ contains all substrings of s$, it is easy to verify whether
p is a substring of s by following the path from the root directed by the characters
of p. If at some point one cannot proceed with the next character in p, then p is
not displayed by the suffix tree and hence it is not a substring of s. Otherwise, if p
occurs in the suffix tree, then it is also a substring of s. Processing each character
of p takes constant time, either by verifying that the next character of an edge label
agrees with the next character of p, or by finding the appropriate outgoing edge of a
branching node. The latter case assumes a constant alphabet size, i.e., |X| = O(1).
Therefore the total time is O(|p|).

2. To count the number of occurrences, we could proceed as follows after solving the
first problem. If p occurs at least once in s, we will have found a position in the tree
(either in the middle of an edge or a node) that represents p. Now we only need
to count the number of leaves below that position. However, this would take time
proportional to the number of leaves. A better way is to preprocess the tree once
in a bottom-up fashion and annotate each node with the number of leaves below.
Then the answer can be found in the node immediately below or at p’s position in
the tree.

81

11 Suffix Tree Applications

3. We first find the position in the tree that corresponds to p in O(|p|) time according
to step 1. Assuming that each leaf is annotated with the starting position of its
associated suffix, we visit each of the z leaves below p and output its suffix starting
position in O(z) time.

Example 50 Let s = abbab. The corresponding suffix tree of abbab$ is shown in Fig-
ure 11.1.

123456
abbab$
I

6 4 1 5 3 2

Figure 11.1: The suffix tree of abbab$ with edge labels, substring pointers and leaf labels.

Suppose p = aba is the pattern. Reading its first character a, we follow the a-edge from
the root. Since the edge has length 2, we verify that the next character b agrees with the
pattern. This is the case. We arrive at the branching node node(ab). Trying to continue,
we see that there is no a-edge outgoing from node(ab), and we cannot proceed matching
p against the suffix tree. In other words, p is not displayed by the tree, hence it is not a
substring of s.

Now suppose p = b. We follow the b-edge from the root, which brings us to the branching
node node(b). Thus b is a substring of s. The leaf numbers in the subtree below node(b)
are 2, 3 and 5. Indeed, b starts in s§ = abbab$ at positions 2, 3 and 5. <

Note that the above analysis assumes that the alphabet size o is a constant. If this is not
the case, i.e. the alphabet size is considered an input variable, then the time it takes to find
the correct outgoing edge at a branching vertex has also to be considered. Different data
structures are possible, corresponding to different points in a typical space-time tradeoft:
(1) A linked list of all outgoing edges requires space proportional to the degree of a vertex,
but in the worst case also O(o) time. (2) A binary search tree takes the same space,
but only O(log o) time in the worst case. (3) An array with constant-time access to each
outgoing edge, on the other hand, requires ©(o) space.

Longest matching prefix. One variation of this exact pattern matching algorithm is to
search for the longest prefix p’ of p that is a substring of s. This can clearly be done in
O(|p'|) time. This operation is useful in a number of more advanced string comparison
models such as maximal matches distance or matching statistics.

82

11.2 Minimum Unique Substrings

11.2 Minimum Unique Substrings

Pattern discovery problems, in contrast to pattern matching problems, deal with the anal-
ysis of just one string, in which interesting regions are to be discovered. An example is
given in the following.

Problem 51 (Minimum Unique Substrings Problem) Given a string s € ¥*, find all
unique substrings of s that have minimum length.

Extensions of this problem have applications in DNA primer design, for example.

Example 52 Let s = ABABB. Then the minimum unique substrings are BA and BB. <

We exploit two properties of the suffix tree of s$.

e If a string w occurs at least twice in s, there are at least two suffixes in s$, of which
w is a proper prefix. Hence in the suffix tree of s$, w corresponds to a path ending
with an edge to a branching node.

e If a string w occurs only once in s, there is only one suffix in s$ of which w is a prefix.
Hence in the suffix tree of s$, w corresponds to a path ending within a leaf-edge.

According to the second property, we can find the unique strings by looking at the paths
ending on the edges to a leaf. So if we have reached a branching node, say node(w),
then we only have to look at the leaf edges outgoing from node(w). Consider an edge
node(w) — v, where v is a leaf, and assume that au is the edge label with first character
a € Y. Then wa occurs only once in s, but w occurs at least twice, since it is a branching
node. Therefore wa is a candidate for being a minimum unique substring, although it is
not necessarily of minimum length. It is an easy exercise, though, to keep only the shortest
of these candidates. Note that the sentinel $ is a trivial minimum unique substring by
definition and therefore usually excluded.

Example 52 (cont’d) The suffix tree of s§ = ABABB is shown in Figure 11.2. It has
four leaf edges (ignoring the edge from the root labeled $), and therefore there are four
candidates for minimum unique substrings, spelling from the root until the first character
of any of these edges: ABA, ABB, BA and BB. The latter two are of minimum length and
will therefore be reported as minimum unique substrings. <

The running time of this simple algorithm is linear in the number of nodes and edges in
the suffix tree, since we have to visit each of these only once, and for each we do a constant
amount of work. The overall algorithm thus runs in optimal linear time since the suffix
tree can be constructed in linear time, there is a linear number of nodes and edges in the
suffix tree and the simple length-filter at the end also takes linear time.

83

11 Suffix Tree Applications

Figure 11.2: Suffix tree of s$ = ABABBS$ illustrating the relationship between the suffix tree
of s$ and endpoints of candidates for minimum unique substrings of s.

11.3 Maximal Repeat-Pairs

Informally, a repeat in a string is a substring that occurs at least twice. However, care
needs to be taken when formalizing the notion of repeat.

Definition 53 Given a string s € ¥*, a repeat-pair in s is a pair of substrings (7, j) and
(¢',4') such that ¢ < i’ and s[i,...,j] = s[i,...,5]. Itslengthis { =j—i+1=j —¢+1.

The substring (7,7) is called the left instance of the repeat-pair, and (i, ;') is called
the right instance of the repeat-pair; see Figure 11.3. Note that the two instances may
overlap.

. i J i J
—_——— —_——
sliy ..., 7] — sli’y ..., 7]

Figure 11.3: Illustration of a repeat-pair ((4,), (¢/,j")) in sequence s.

Example 54 The string s = agagctcgagc, |s| = 10 contains the following repeat-pairs of

length > 2:
((2,5),(8,11)) | gagc
((2,4),(8,10)) | gag
((2,3),(8,9)) |ea
((3,5),(9,11)) | agc
((1,2)(3,4))
((1,2)(10,11)) | ag
((3,4),(10,11))
((4,5),(10,11)) | gc

84

11.3 Maximal Repeat-Pairs

We see that shorter repeat-pairs are often contained in longer repeat-pairs. To remove
redundancy, we introduce maximal repeat-pairs, illustrated in Figure 11.4. Essentially,
maximality means that the repeated substring cannot be extended to the left or to the
right.

Definition 55 A repeat-pair ((4,j), (¢, 7)) in a string s is left-maximal if and only if i = 1
or s[i — 1] # s[i’ — 1]. Tt is right-maximal if and only if j' = |s| or s[j + 1] # s[j' +1]. A
repeat-pair is maximal if it is both left-maximal and right-maximal.

) i j marimal <= a#candb#d g 5’
a b C. .d
sliy ..., J] = s’y ..., 7]

Figure 11.4: Illustration of maximality of repeat-pairs

From now on we restrict ourselves to maximal repeat-pairs. All non-maximal repeat-pairs
can easily be obtained from the maximal repeat-pairs. In Example 54, most repeat-pairs
can be extended to the left or to the right. Only the three repeat-pairs ((2,5), (8,11)),
((1,2),(3,4)) and ((1,2),(10,11)) are maximal.

Problem 56 (Maximal Repeat-Pair Discovery Problem) Given a string s € ¥*, find all
maximal repeat-pairs of s (possibly of a given minimal length ¢).

An optimal algorithm. We shall present a linear-time algorithm to compute all maximal
repeat-pairs. It works in two phases: In the first phase, the leaves of the suffix tree are
annotated. In the second phase, the maximal repeat-pairs are reported while the branching
nodes are annotated simultaneously in a bottom-up procedure.

In detail, suppose we have the suffix tree for some string s$. We ignore leaf edges from the
root, since the root corresponds to repeat-pairs of length zero and we are not interested
in these. Figure 11.5 gives an example for the string s = ggcgctgegec.

In the first phase, the algorithm annotates each leaf of the suffix tree: leaf v with path-
label string(v) = s[i...n| is annotated by the pair (a;), where i is the position at which
the suffix ending at v starts and a = s[i — 1] is the character to the immediate left of
that position. We also write A(v, s[i — 1]) = {i} to denote the annotation, and assume
A(v,c) = for all characters ¢ € ¥ different from s[¢ — 1]. The latter assumption holds in
general (also for branching nodes) whenever there is no annotation for some character c.
For the suffix tree of Figure 11.5, the leaf annotation is shown in Figure 11.6.

The leaf annotation gives us the character upon which we decide the left-maximality of a
repeat-pair, plus a position where a repeated string occurs. We only have to combine this
information at the branching nodes appropriately.

This is done in the second phase of the algorithm: In a bottom-up traversal, the repeat-
pairs are reported and simultaneously the annotation for the branching nodes is computed.

85

11 Suffix Tree Applications

tgcgcec$

11

123456789.12
ggcgctgcgec$

7 2

Figure 11.5: The suffix tree for ggcgctgegee$. Leaf edges from the root are not shown.
These edges are not important for the algorithm.

A bottom-up traversal means that a branching node is visited only after all of its children
have been visited.

Consider a vertex v. The first child copies its lists A to v. Then the other children of v
are considered one after the other. Thereby a child, say w, is processed as follows:

1. Repeat-pairs (for the string ending at node v) are reported by combining the anno-
tation already computed for node v with the complete annotation stored for w (this
was already computed due to the bottom-up strategy). In particular, we consider
all pairs ((¢,i+q—1),(5,5 +¢— 1)), where

e ¢ is the string-depth of node v, i.e. ¢ = [string(v)],

e i € A(v,0) and j € A(w,o’) for some characters o # o, where A(v,0) is
the annotation already computed for v w.r.t. character ¢ and A(w,o’) is the
annotation stored for node w w.r.t. character o’

Note that only those pairs are considered which have different characters to the left.
Thus it guarantees left-maximality of the repeat-pairs.

2. Recall that we consider processing the edge v — w and let a be the first character of
the label of this edge. The annotation already computed for v was inherited along
edges outgoing from v, that are different from v — w. Thus the first character of the
label of such an edge, say b, is different from a. Now since string(v) is the repeated
substring, b and a are characters to the right of string(v). As a consequence, only
those positions are combined which have different characters to the right. In other
words, the algorithm also guarantees right-maximality of the repeat-pairs.

As soon as for the current edge the repeat-pairs are reported, the algorithm computes the
union A(v,c)UA(w, ¢) for each character ¢, i.e. the annotation is inherited from node w to
node v. In this way, after processing all edges outgoing from v, this node is annotated by

86

11.3 Maximal Repeat-Pairs

gcgctgegec$

0123456789.12
#ggcgctgegee$

Figure 11.6: The suffix tree for ggcgctgegec$ with leaf annotation. For convenience, a
second sentinel character # has been added to the left at index position 0.

the set of positions where string(v) occurs, and this set is divided into (possibly empty)
disjoint subsets A(v,¢1), ..., A(v,cy), where ¥ = {c1,..., ¢}

Example 57 The suffix tree of the string s$ = ggcgetgegece$ is shown in Figure 11.5. We
assume the leaf annotation of it (as shown in Figure 11.6) is already determined.

Proceeding from leaves 7 and 2, the bottom up traversal begins with node v whose path-
label is gcge, of string-depth ¢ = 4. This node has two children. First, the leaf-list (t;7)
of the first child is copied to v. Then the list is compared to any leaf-list of all remaining
children (here only one) that is not a t-list. Here this is only the list (g;2). This pair
is automatically left-maximal and therefore reported: ((2,24+4 —1),(7,7+4—1)) =
((2,5),(7,10)). Then the leaf-list of the second child, g,2) is merged with the leaf-lists
already present at noce v, as can be seen in Figure 11.7.

0123456789.12
#ggcgctgegec$

Figure 11.7: The annotation for a large part of the suffix tree of Figure 11.6 and some
repeats.

Next comes the node v" with path-label gc of depth two. The algorithm starts by copying
the leaf-list (c;9) from the leftmost child of v’. Then the second child is processed, which

87

11 Suffix Tree Applications

is the node v that has annotation (g, 2), (t,7). Since both left-characters are different
from c, the repeat-pairs ((7,8),(9,10)) and ((2,3),(9,10)) are reported. Then the leaf-
lists are merged (the new annotation for v’ becomes (c,9), (t,7), (g,2)) and the procedure
is continued with the third child, that has leaf-list (c,4). The annotations (c,9) and (c,4)
can not be combined because they have the same left-character. So only the repeat-pairs
((4,5),(7,8)) and ((2,3), (4,5)) are reported, resulting from the combination of (t;7) and
(g;2) with (c;4). The final annotation of v’ is (g,2), (c;4,9), (t;7), which can also be
written as A(v/, g) = {2}, A(v/,c) = {4,9} and A(v',t) = {7}. We leave further processing
up to the reader. <

Running Time. Let us now consider the running time of the algorithm. Traversing the
suffix tree bottom-up can surely be done in time linear in the number of nodes, since each
node is visited only once and we only have to follow the paths in the suffix tree. There are
two operations performed during the traversal: Output of repeat-pairs and combination
of annotations. If the annotation for each node is stored in linked lists, then the output
operation can be implemented such that it runs in time linear in the number of repeat-
pairs. Combining the annotations only involves linking lists together, and this can be done
in time linear in the number of nodes visited during the traversal. Recall that the suffix
tree can be constructed in O(n) time. Hence the algorithm requires O(n + z) time where
n is the length of the input string and z is the number of maximal repeat-pairs. (Analysis
shows that the number of maximal repeat-pairs of a string of length n is z € O(n?) in the
worst case.)

To analyze the space consumption of the algorithm, first note that we do not have to
store the annotations for all nodes at once. As soon as a node and its parent has been
processed, we no longer need the annotation. As a consequence, the annotation requires
only O(n) overall space. Hence the space consumption of the algorithm is O(n).

Altogether the algorithm is optimal since its space and time requirements are linear in the
size of the input plus the size of the output.

11.4 Maximal Unique Matches

The standard dynamic programming algorithm to compute an optimal alignment between
two sequences of lengths m and n requires O(mn) time. This is too slow if the sequences
are on the order of millions or even billions of characters.

There are other methods which allow to align two genomes under the assumption that
these are fairly similar. The basic idea is that the similarity often results in long identical
substrings which occur in both genomes. These identities, called MUMs (for maximal
unique matches) are almost surely part of any good alignment of the two genomes. So the
first step is to find the MUMs. These are then taken as the fixed parts of an alignment,
and the remaining parts of the genomes (those parts not included in a MUM) are aligned
with traditional dynamic programming methods. In this section, we will show how to
compute the MUMs in linear time. This is very important for the practical applicability
of the method. We do not consider how to compute the final alignment. (The whole

88

11.4 Maximal Unique Matches

procedure of genome alignment is discussed in Chapter 15 of these notes.) We first have
to define the notion MUM precisely:

Definition 58 Given strings s,t € ¥* and a minimal length ¢ > 1, a MUM is a triple
(4,7, L) representing a string u = s[i,i + L — 1] = t[j,j + L — 1] of length L that satisfies
the following conditions:

1. L > ¢ (length restriction),
2. wu occurs exactly once in s and exactly once in ¢ (uniqueness),

3. for any character a, neither au nor ua occur in both s and ¢ (left- and right-
maximality).

Problem 59 (Maximal Unique Matches Problem) Given s,¢ € ¥* and a minimal length
£ >1, find all MUMs of s and t.

Example 60 Let s = ccttecgt, t = ctgtegt, and ¢ = 2. Then there are two maximal
unique matches, (2,1,2) representing ct and (4, 4, 4) representing tcgt. Now consider an
optimal alignment of these two sequences (assuming unit costs for insertions, deletions,
and replacements):

cct-tcgt
-ctgtcgt

The two MUMSs ct and tcgt are part of this alignment. <
To compute the MUMs, we first construct the generalized suffix tree for s and ¢, i.e. the

suffix tree of the concatenated string z := s#t$.

A MUM (i, j, L) representing u must occur exactly twice in x, once in s and once in t.
Hence u corresponds to a path in the suffix tree ending with an edge to a branching node.
Since a MUM must be right-maximal, © must even end in that branching node, and that
node must have exactly two leaves as children, one in s and one in . It remains to check
the left-maximality in each case. We thus arrive at the following algorithm:

For each branching node v of the suffix tree of =z,
1. check that its string-depth is at least ¢ (length restriction),

2. check that there are exactly two children, both of which are leaves (uniqueness,
right-maximality),

3. check that the suffiz starting positions i and j at those leaves correspond to positions
one from s and one from ¢ in x (match),

4. check that the characters z[i — 1] and z[j — 1] are different, or i = 0 or j = 0
(left-maximality).

89

11 Suffix Tree Applications

If all checks are true, output stringv and/or its positions i and j.

Clearly, the algorithm runs in linear time O(|z|) since each step (1. — 4.) can be organized
to run in constant time, and there are a linear number of branching nodes in the suffix
tree of x.

Example 60 (cont’d) Let s = ccttegt, t = ctgtegt and £ = 2. Consider the suffix tree
for s#t$ shown in Figure 11.8.

15

tcgt#ctgtegts
cttcgt#ctgtcgt$

Figure 11.8: The suffix tree for ccttcgt#tctgtcgt$ without the leaf edges from the root

The string tcgt occurs once in s (at index 4) and once in ¢ (at index 4), since there are
two corresponding leaf edges from branching node node(tcgt). Comparing the characters
s[3] = t and t[3] = g immediately to the left of the occurrences of tcgt in s and ¢ verifies
left-maximality. Similarly for ct. Thus we have found the two MUMs (4,4, 4) and (2,1, 2).
On the other hand, cgt (occurring at index 5 in s and at index 5 in ¢) is not left-maximal
and therefore no MUM, because both occurrences have the left neighbor s[4] = t[4] = t.
<

90

12 Suffix Arrays

12.1 Motivation

We have already seen that suffix trees are a very useful data structure for a variety of
string matching problems. In the early 1990s, it was believed that storing a suffix tree
needs around 30—40 bytes per character. Given the smaller amounts of available memory
at that time, this led to the invention of a “flat” data structure that is even more memory
efficient but nevertheless captures the essence of the suffix tree: the suffix array.

Moreover, a suffix array can be complemented with additional information, called an
enhanced suffix array or extended suffix array, and is then able to completely replace
(because it is equivalent to) the suffix tree. Additionally, some problems have simpler
algorithms on suffix arrays than on suffix trees (for other problems, the opposite is true).

A suffix array is easy to define: Imagine the suffix tree, and assume that at each internal
node the edges toward the children are alphabetically ordered. If furthermore each leaf is
annotated by the starting position of its corresponding suffix, we obtain the suffix array
by reading the leaf labels from left to right. In fact, the suffix array is the array of the
(starting positions of the) suffixes in ascending lexicographic order.

12.2 Basic Definitions

In this section, we start counting string positions at zero. Thus a string s of length n is
written as s = (s[0],...,s[n — 1]). As before, we append a sentinel $ to each string. In
examples, we shall always assume a natural order on the alphabet ¥ and define $ to be
lexicographically smaller than any character of X, i.e., $ <a<b<c<....

Definition 61 For a string s € X", the suffix array pos of s$ is a permutation of the
integers {0,...,n} such that pos|r| is the starting position of the lexicographically r-th
smallest suffix of s$.

The inverse suffix array rank of s$ is a permutation of the integers {0, ...,n} such that
rank|p| is the lexicographic rank of the suffix starting at position p.

Clearly by definition rank[pos[r]] = r for all € {0,...,n}, and also pos[rank[p|] = p for
all p € {0,...,n}. Since we assume that $ is the smallest character and occurs only at
position n, we have rank[n| = 0 and pos[0] = n.

The suffix array by itself represents the order of the leaves of the suffix tree, but it does
not contain information about the internal nodes. Recall that the string depth of an

91

12 Suffix Arrays

internal node corresponds to the length of the longest common prefix of all suffixes ending
at leaves below that node. We can therefore recover information about the internal nodes
by making the following definition.

Definition 62 Given a string s € X" and the suffix array pos of t = s$, we define the
longest common prefix array lcp: {1,...,n} — Ny by

lcp[r] := max{|z| | = is a prefix of both t[pos[r — 1]...n] and t[pos[r]...n]}.

In other words, 1cp|r| is the length of the longest common prefix of the suffixes starting
at positions pos[r — 1] and pos[r].

By convention, we additionally define 1cp[0] := —1 and lcp[n + 1] := —1; this avoids
treating boundary cases specially.

Example 63 Table 12.1 shows the suffix array pos and the 1cp array of the string abbab$.
The suffix tree was given in Figure 11.1. Since there we started counting string positions
at 1, the suffix array is obtained by subtracting 1 from the leaf labels, and reading them

from left to right: pos = (5,3,0,4,2,1). <
T 0 1 2 3 4 5
suffix $ ab$ abbab$ b$ bab$ bbab$
pos[r] 5 3 0 4 2 1
r | o | 1 [2 | 3 | 4 | 5 | 6
leplr] || -1 2 0 1 1 -1

Table 12.1: Suffix array pos of string s$ = abbab$ and its longest common prefix array
lcp. The inverse rank is clearly (2,5,4,1,3,0).

Intervals in the suffix array and Icp intervals. There is a one-to-one correspondence
between internal nodes in the suffix tree and certain intervals in the suffix array. Indeed,
we have already seen that all leaves below an internal node v in the suffix tree correspond
to a particular interval of at least two elements in the suffix array. Here we denote this
interval by pos[j...k], for positive integers j < k. If v has string depth d, it follows that:

e lcpli] < d, since the suffix starting at pos[i — 1] is not below v and hence does not
share a common prefix of length d with the suffix starting at pos]i];

e lcp[r] > d for all r with ¢ < r < j, since all suffixes below v share a common prefix
of at least d. On the other hand, at least for one r in this range, we have lcp[r] = d.
Otherwise, if all 1cp[r] > d in this range, v would have a string depth larger than d,
contradicting the original assumption.

e lcp[j + 1] < d, since again the suffix starting at pos[j + 1] is not below v.

Conversely, each pair ([, k], d) satisfying j < k and the above conditions corresponds to
an internal node in the suffix tree. Such an interval [i, j] is called a d-interval, or generally,
an lcp interval.

92

12.3 Suffix Array Construction Algorithms

12.3 Suffix Array Construction Algorithms

12.3.1 Linear-Time Construction using a Suffix Tree

Given the suffix tree of s$, it is straightforward to construct the suffix array of s$ in linear
time. We start with an empty list pos and then do a depth-first traversal of the suffix tree,
visiting the children of each internal node in alphabetical order. Whenever we encounter a
leaf, we append its annotation (the starting position of the associated suffix) to pos. This
takes linear time, since we traverse each edge once down and later up again, and there is
a linear number of edges.

If the suffix tree data structure stores the internal nodes in depth-first order, the suffix
array is particularly simple to construct. One must merely walk through the memory
locations from left to right, keep track of the current string depth, and collect all leaf
pointers along the way. Leaf pointers can be recognized e.g. by a special flag. The leaf
number is obtained by subtracting the current string depth from the leaf pointer.

This construction is simple and fast, but first requires the suffix tree. One of the major
motivations of suffix arrays was to avoid constructing the tree in the first place. Therefore
direct construction methods are more important in practice.

12.3.2 Direct Construction

The simplest direct construction method is to use any comparison-based sorting algorithm
(e.g. Mergesort or Quicksort) and apply it to the suffixes of s§. We let n := |s|. For the
analysis we need to consider that a comparison of two suffixes does not take constant
time, but O(n) time, since up to n characters must be compared to decide which suffix is
lexicographically smaller. Optimal comparison-based sorting algorithms need O(nlogn)
comparisons, so this approach constructs the suffix array in O(n?logn) time.

Especially Quicksort is an attractive choice for the basic sorting method, since it is fast in
practice (but needs O(n?) comparisons in the worst case, so this would lead to an O(n?)
worst-case suffix array construction algorithm), and sorting the suffix permutation can be
done in place, so no additional memory besides the text and pos is required.

As already mentioned in the analysis of the WOTD algorithm (Section 10.5), for an
average random text, two suffixes differ after log, n characters, so each comparison needs
only O(logn) time on average. Combined with the average-case running time of QuickSort
(or worst-case running time of MergeSort), we get an O(nlog? n) average-case suffix array
construction algorithm that is easy to implement and performs very well in practice on
strings that do not contain long repeats.

Manber-Myers Algorithm. Manber and Myers (1993), who introduced the suffix array
data structure, proposed an algorithm that runs in O(n logn) worst-case time on any string
of length n. It uses an ingenious doubling technique due to Karp, Miller and Rosenberg
(Karp et al., 1972).

93

12 Suffix Arrays

The algorithm starts with an initial character-sorting phase (called phase k = 0) and then
proceeds in up to K := [logy n| phases, numbered from k = 1 to k = K. The algorithm
maintains the invariant that after phase k € {0,..., K}, all suffixes have been correctly
sorted according to their first 2¥ characters. Thus, in phase 0 it is indeed sufficient to
group the suffixes according to their first character into o buckets, one for each letter of
the alphabet .

Each of the following phases £ = 1,..., K must then double the number of accounted
characters and update the suffix order accordingly. This is achieved by refining the buckets
of suffixes with equal first 2¥~1 characters from the previous phase, using the order of their
continuations starting after the common part, i.e. with offset 2¥~1. Interestingly, this order
is given by the relative suffix order from the previous phase, resulting in a refinement by
another 2¥~! characters in a single step. Therefore, after phase k, the suffixes are sorted
according to their first 28~1 + 25=1 = 2% characters.

After phase K, all suffixes are correctly sorted with respect to their first 2% > n characters
and therefore in correct lexicographic order. Clearly, the initial sorting in phase k = 0 is
possible in linear time O(n). In order to see that each doubling phase runs in O(n) time as
well, note that essentially a bucket sort is performed inside each group, using the bucket
position from the previous phase as key. This takes in total O(n) time for all buckets
of one phase. Therefore, and considering that there are O(logn) phases, the O(nlogn)
running time of the overall algorithm is established.

The following example illustrates the algorithm.

Example 64 Given string s§ = MAMMAMIAMMAMIAS, the following arrays show the interme-
diate steps of the Manber-Myers algorithm.

o F# bucket start
$ 1 0
MAMMAMIAMMAMIAS A5 1
0123456789.1234
I 2 6
M 7 8
after $ A I M
phase 0 |14 1,4, 7,10, 13 6, 12 0,2,35,8 09,11
after $ |A$ AM IA MA MI MM
phase 1 (14|13 1,4,7,10 6, 12 0,3,9 5, 11 2,8
after $|A$| AMIA AMMA |IA$|IAMM| MAMI |MAMM|MIA$|MIAM| MMAM
phase 2 |14(13| 4, 10 1,7 12| 6 3,9 0 11 5 2,8
$ |A$|AMIA|AMIA|AMMA|AMMA|TIA$|IAMM|MAMI [MAMI |MAMM|MIA$|MIAM|MMAM|MMAM
after $ |MMAM|MIA$|MIAM AMIA| A$ |AMMA|AMIA MAMI| IA$ |IAMM
phase 3 |14|13| 10 4 7 1 12| 6 9 3 0 11 5 8 2

94

12.3 Suffix Array Construction Algorithms

The algorithm takes at most K = [log, 15] = 4 phases. More precisely, in this example it
terminates already after only 3 phases. <

Skew Algorithm. There also exists a more advanced algorithm, called Skew (Kérkkéinen
and Sanders, 2003) that directly constructs suffix arrays in O(n) time. However, we will
not give details here.

12.3.3 Construction of the rank and 1cp Arrays

We show how to construct the rank and lcp arrays in linear time when the suffix array
pos is already available.

The inverse suffix array rank can be easily computed from pos in linear time by the
following one-liner, using the fact that rank and pos are inverse permutations of each
other.

for(int r=0; r<=n; r++) rank[pos[r]ll=r;

Computing lcp in linear time is a little bit more difficult. The naive algorithm, comparing
the prefixes of all adjacent suffix pairs in pos until we find the first mismatch, can be
described as follows:

lcpl0] = lcpln+1] = -1; // by convention
for(int r=1; r<=n; r++) {

lcplr] = LongestCommonPrefixLength(pos([r-1],pos(r]);
}

Here we assume that LongestCommonPrefixLength(p;,p2) is a function that compares
the suffixes starting at positions p; and ps character by character until it finds the first
mismatch, and returns the prefix length. Clearly the overall time complexity is O(n?).

The following algorithm, due to Kasai et al. (2001) achieves O(n) time by comparing the
suffix pairs in a different order. On a high level, it can be written as follows:

lcpl0] = lcpln+1] = -1; // by convention
for(int p=0; p<n; p++) {

lcplrank[p]] = LongestCommonPrefixLength(pos[rank[p]l-1],p);
}

At first sight, we have gained nothing. Implemented in this way, the time complexity is
still O(n?). The only difference is that the 1cp array is not filled from left to right, but in
apparently random order, depending on rank.

The key observation is that we do not need to evaluate LongestCommonPrefixLength from
scratch for every position p. First of all, let us simplify the notation. Define left[p] :=
pos[rank[p] — 1]; this is the number immediately left of the number p in the suffix array.
Then the algorithm from above looks as follows:

95

12 Suffix Arrays

lcpl0] = 1lcpln+1] = -1; // by convention
for(int p=0; p<n; p++) {

lcplrank[p]] = LongestCommonPrefixLength(left[p]l,p);
}

In the first iteration of the loop, we have p = 0 and compute the lcp-value at rank[p],
i.e., the length L of the longest common prefix of the suffixes starting at position p and at
position left[p] (which can be anywhere in the string).

In the next iteration, we look for the longest common prefix length of the suffixes starting
at positions p + 1 and at left[p + 1. If left[p + 1] = left[p] + 1, we already know that
the answer is L — 1, one less than the previously computed value, since we are looking
at the same string with the first character chopped off. If left[p + 1] # left[p] + 1, we
know at least that the current lcp value cannot be smaller than L — 1, since (assuming
L > 0 in the first place) the number left[p] + 1 must still appear somewhere to the left
of p + 1 in the suffix array, but might not be directly adjacent. Still, the suffixes starting
at left[p] + 1 and p + 1 share a prefix of length L — 1. Everything in between must share
a common prefix that is at least that long. Thus we do not need to check the first L — 1
characters, we know that they are equal, and can immediately start comparing the L-th
character.

The same idea applies to all p-iterations. We summarize the key idea in a lemma, which
we have just proven by the above argument.

Lemma 65 Let L := lcp[rank[p]]. Then lcp[rankp+ 1]] > L — 1.

The algorithm then looks as follows.

lcpl0] = lcpln+1] = -1; // by convention

L =0;

for(int p=0; p<n; p++) {
L = lcplrank[p]] = LongestCommonPrefixExtension(left[p],p,L);
if (L>0) L--;

}

Here LongestCommonPrefixExtension(pi,pe, L) does essentially the same work as the
function LongestCommonPrefixLength above, except that it starts comparing the suffixes
at p1 + L and ps + L, effectively skipping the first L characters of the suffixes starting at
p1 and po, as they are known to be equal.

It remains to be proven that these savings lead to a linear-time algorithm. This is done
by a technique called amortized analysis. We focus on the path of values that variable
L takes. First, note that the maximal value that L can take at any time, including
upon termination, is n. Initially L is zero. L is decreased at most n times. Thus in
total, L can increase by at most 2n across the whole algorithm. FEach increase is due
to a successful character comparison. Each call of LongestCommonPrefixExtension, of
which there are n, ends with a failed character comparison. Thus at most 3n = O(n)
character comparisons are made during the course of the algorithm. Thus we have proven
the following theorem.

96

12.4 Applications of Suffix Arrays

Theorem 66 Given the string s$ and its suffix array pos, the lcp array can be computed
in linear time.

12.4 Applications of Suffix Arrays

Often, applications from suffix trees can be adapted to the suffix array data structure with
little or no overhead. These include:

e exact string matching in O(|p|logn) time (or in O(|p| + logn) time with the lcp
array)

matching statistics

Burrows-Wheeler transformation (Burrows and Wheeler, 1994), see Chapter 13

FM index (Ferragina and Manzini, 2005), see Section 14.1

e ... and many more, see e.g. (Abouelhoda et al., 2002)

97

13 Burrows-Wheeler Transformation

13.1 Introduction

The Burrows-Wheeler transformation (BWT) is a technique to transform a text into a
permutation of this text that is easy to compress and search. The central idea is to sort
the cyclic rotations of the text and gaining an output where equal characters are grouped
together. These grouped characters then are a favorable input for run-length encoding,
where a sequence of numbers and characters is constructed, considerably reducing the
length of the text (see Section 13.4.1).

Due to the fact that in sequence analysis mostly large data sets are processed, it is favorable
to have a technique compressing the data to reduce memory requirement and at the same
time enabling important algorithms to be executed on the converted data. The BWT
provides a transformation of the text fulfilling both requirements in a useful and elegant
way. Further, the transformation is bijective, so it is guaranteed that the original text can
be reconstructed in an uncompression step, called retransformation.

13.2 Transformation and Retransformation

A simple definition of the Burrows-Wheeler transformation is the following:

Definition 67 Let s € ¥* be an input string of length n := |s| and t = s$. Further, let M
be the (n 4+ 1) x (n + 1)-matrix containing in its rows the lexicographically sorted cyclic
rotations of t. The Burrows-Wheeler transformation bwt(¢) is the last column of M,

bwt(t)[i] := M (i,n) for all i, 0 < i < n.

Note that the construction method implied by this definition is very inefficient. As de-
scribed, it requires O(n?) space, and even if the lexicographic sorting is performed in an
efficient way, it still takes at least quadratic time to generate the matrix M. A more
efficient possibility to compute bwt(t) is to construct the column L directly. This can
be done by decrementing in the suffix array of ¢ each entry of the array pos, modulo
n + 1 if necessary. Formally, we call 1left[i] = pos[i]qecns1 for all i, 1 < i < n, where
ZTdeen+1 = (x —1) mod (n+ 1). Then bwt(t)[i] = s[left[d]].

Observation 68 Facing the output string bwt(¢) it can be seen that equal characters are
often grouped together.

99

13 Burrows-Wheeler Transformation

This phenomenon is called left context. It can be observed in every natural language and
it is due to their structural properties, of course with differently distributed probabilities
for every language.

Example 69 In an English text, there will be many occurrences of the word ‘the’ and also
some occurrences of ‘she’ and ‘he’. Sorting the cyclic rotations of the text will lead to a
large group of ‘h’s in the first column and thus ‘t’s, ‘s’s and gaps will be grouped together
in the last column. This can be explained by the probability for a ‘t” preceding ‘he’; which
is obviously quite high in contrast to the probability of e.g. an ‘h’ preceding ‘he’. <

Reconstruction. Besides L = bwt(t), which is the last column of the matrix M, the
first column F' is available by lexicographically sorting bwt(¢). The reconstruction of the
text is done in a back-to-front manner by a method called Last-to-Front Mapping (LF
mapping) based on of the following observation on the Burrows-Wheeler transformation,
which we also call the central property of the BWT:

Observation 70 The ith occurrence of a character x in L refers to the same character in
the original text as the ith occurrence of x in F'.

The LF mapping is accomplished by the following steps:

1. Examine the sentinel $ in the last column.

2. Search the occurrence of the reconstructed character in F' by exploiting Observa-
tion 70.

3. Examine the precursor of the reconstructed character. Due to the fact that the
matrix contains the cyclic rotations, each character in the last column is the precursor
of the character in the first column of the same row.

Repeat step 2 and step 3 until the sentinel $ is reached again. The reconstruction phase
ends and the original input string is obtained.

Efficient ways how to perform these searches are known, see e.g. Ferragina and Manzini

(2005), Karkkdinen (2007) or Adjeroh et al. (2008). The first of these approaches (FM-

index) is discussed in Section 14.1.

Example 71 Let the text be t = s$ = STETSTESTES.

Transformation. Construct the matrix M by building the cyclic rotations of ¢ and sorting
them (shown in Figure 13.1). The Burrows-Wheeler transformation bwt(¢) can be found
in the last column L = bwt(¢) = ETTTET$SSSE.

100

13.3 Exact String Matching

HH 4 nwnwnboM @ se|lY
M wnwnwnweAdMHAAA N

nEHEEHMAHA A3 A0 e n
HH e MM WnAonA
Mmwm=awnAHWmHAMEAHE
N A0 30 MmMe M
HMme MA@ n 3
MmnndAMmeeamAaAanAd
A1 nnnAa9mmEA4gME
(92 I o I o B R B IR O T - A I 3 B 0
HedMmMmmEm3 0 n n A

Figure 13.1: This is the matrix M containing the cyclic rotations.

Retransformation. Reconstruct column F' by lexicographically sorting the last column
L = bwt(t) = ETTTETS$SSSE, giving F' = $EEESSSTTTT (this is sketched in Figure 13.2).
Starting with the sentinel in L, the sentinel in F' is searched. Because it is sorted, the
sentinel of course is found at position 0. Thus the second reconstructed character is the E
at L[0]. This is the first E in L, so the first E in F’ is searched, etc. In the end, the original
input ¢ = STETSTESTES is achieved again in right to left order.

H A H0nwnwnibimme|ly
MmnnwneeAMmAdAA N

Figure 13.2: Hlustration of the reconstruction path through the matrix.

13.3 Exact String Matching

Consider again the task of searching a pattern p in a sequence s. Amazing about the
BWT is the existence of an exact string matching algorithm that works directly on the
transformed text, the so-called backward search. Similar to the reconstruction step of
the BWT, this algorithm also works in a back-to-front manner, by first searching the last

101

13 Burrows-Wheeler Transformation

character of the pattern in F'. All occurring precursors in L are then compared to the
next character in the pattern, matching ones are marked in F', and so on.

Eventually, this is a slightly modified application of the second and third step of the LF-
mapping described before. But instead of always searching for one character in F' we
search for a range of characters and examine their precursors in L for matching.

This leads to the following iteration, which is started for ¢ := |p| — 1 (index of last position
in the pattern).

1. Determine the interval of all occurrences of p[i] in F.

2. Continue with the same interval in L which corresponds to the precursors of the
currently considered characters.

3. For all entries in the current interval in L which equal p[i — 1], determine their
occurrence in F (LF-mapping). These define a new interval in F. Therefore it
suffices to perform the LF-mapping only for the first and the last such element. (See
Figure 13.3 for an example.)

a) If this is empty, the algorithm ends and the pattern does not occur in the text.

b) If the interval is not empty and ¢ = 0, the pattern is found at the corresponding
positions.

c¢) Otherwise decrease i by 1 and continue with step 2

If the pattern was found we can examine two more properties. First, the number of
precursors matching the first character of the pattern equals the number of occurences in
the text. Second, if at the beginning the suffix array of the original text was stored and
sorted along with the rotations, then after searching the first character of the pattern in
F, the values at the corresponding indices in the suffix array will refer to the positions
where the pattern is found the original text.

Example 72 Consider the text ¢ = s§ = RHABARBERBARBARAS$ and the pattern p = BARBAR.
The Burrows-Wheeler Transform of ¢ is L = bwt(¢) = ARHBBBRRARBRAAEAS.

Figure 13.3 illustrates the search: First, the last character of p, namely R, is searched in
F and its first and last occurrences are highlighted in black. Then the next character of
p, which is A, is searched in L. The first and last occurrences of A that are precursors of
the already highlighted Rs are also marked. The newly marked As are searched in F' and
the precursors, which correspond to the next character of the pattern (B), are searched.
Again, the first and last are marked in L and then searched in F'. The next characters in
p are R and A. Here there is only one matching precursor. Afterwards the last searched
character, the B, is found as a precursor of the A.

In this case the pattern is found exactly once. To gain the index where the pattern starts
in the text, the occurrence of the last found character (the first character of p) is searched
in F'. The corresponding value of the suffix array determines the wanted index. The suffix
array in this example is [16,15,2,13,10,4,12,9,3,6,7,1,14,11,8,5,0]. Our search ended at the
second occurring B, which is at index 7 in F. Looking up the value of the suffix array at

102

13.4 Other Applications

Alg—|B B
L - Al —|B
A|lg— | B ~|°B .
. B #—> R R
SR ‘R
B |2y |/
R|— | A A .
R| % | A A
R| ¥ |4
A A
R | —

Figure 13.3: Searching the pattern BARBAR in RHABARBERBARBARAS.

index 7 gives a value of 9, therefore index 9 is the position where the pattern starts in s.
<«

13.4 Other Applications

Besides exact string matching, also other common string matching problems can be solved
with the BWT. For example, read mappers have been developed that work on the BWT,
e.g. BWA (Li and Durbin, 2009, 2010) or Bowtie (Langmead et al., 2009). They apply
a semi-global alignment algorithm on short queries and contain a Smith-Waterman-like
heuristic for longer queries, allowing higher error rates. For more information see http:
//bio-bwa.sourceforge.net/bwa.shtml.

The BWT of a text is further suitable for effective compression, e.g. with move-to-front or
run-length encoding. The occurrence of grouped characters enables a significantly better
compression than compressing the original text.

13.4.1 Compression with Run-Length Encoding

The run-length encoding (RLE) algorithm constructs a sequence of numbers and characters
from the text. The text is searched for runs of equal characters, and these are replaced by
the number of occurrences of this character in the run and the character itself, e.g. instead
of EEEEE just 5E is saved. A threshold value determines how long a run at least must be to
be compressed in this way. Default for this threshold is 3, so single and double characters
are not changed, but instead of a run of three times the character ¢, the algorithm will save

103

13 Burrows-Wheeler Transformation

3c. Texts with many and long runs thus will obviously be effectively compressed. This
data structure is also called the run-length compressed BWT (RLBWT). Clearly,
it can be stored on O(r) space where r is the number of runs of consecutive identical
characters in bwt(¢).

Example 73 Considering again the example ¢t = s$ = STETSTESTE$, the compression with
RLE will have no advantage. If instead the Burrows-Wheeler transform of ¢, bwt(t) =
ETTTET$SSSE, is compressed, the space requirement is reduced by two characters, since
the compressed string is rle(bwt(¢)) = E3TET$3SE. As soon as the input string gets longer,
it is likely that more grouped characters occur, and thus the space requirement reduction
is even more significant. <

13.4.2 Matching Statistics

The matching statistics of a (long) sequence s of length n with respect to a (short)
pattern p is an integer array M of length n such that M[i] is the length of the longest
prefix of the suffix s[i, n] that is a substring of p. Like with suffix trees and suffix arrays,
the matching statistics can also be computed efficiently using the BWT of p.

The main idea is to construct the BWT of p$ and then perform a backward search with
s, as long as an extension (to the left) is possible, i.e. the corresponding interval in F
is not empty. This gives the M values for the suffixes of s. Once an extension is no
longer possible, the “parent interval” (according to the lcp interval structure discussed
in Section 12.2) of the last non-empty interval has to be chosen. This corresponds to
removing non-branching suffixes of the previous entry in the matching statistic. Here the
backward search is continued, yielding (unless again empty) the M values for the next
position(s) of s. The procedure is continued until the beginning of s is reached.

Details can be worked out as an exercise.

104

14 Using the BWT Efficiently

Originally the Burrows-Wheeler transformation was developed with the application of
better text compression and decompression in mind. This can essentially be implemented
by iterated LF-mapping as described in the previous chapter. Later the method has also
been used for string matching with the seed-and-extend approach. This is realized by
backward search, which was also described in the previous chapter.

In this chapter we want to study how the same functionalities (LF-mapping, backward
search) can be implemented in even less space, using the run length-encoded BWT. This
can be very effective in practice, especially for very large texts.

Before we explain the main topic of this chapter, the MOVE datastructure, we quickly
introduce two other datastructures that were important landmarks on the way.

14.1 The FM-Index

Ferragina and Manzini (2005) introduced the FM-index, which is the BWT enhanced by
two access functions, rank() and select(), that allow a quick implementation of LF-
mapping, defined as follows.

Definition 74 Given an input string s, let ¢t = s$, L = bwt(t) and F' be the alphabetically
ordered list of characters in s$. Then

rank(7) = the number of occurrences of character L[i] before index i in L
and

select(c, i) = the ith occurrence of character ¢ in F’

Then LF(i) = select(L[i], rank(z)).

Efficient implementations of the two functions can be realized as follows:

select can easily be implemented in O(o) space and constant time: select(c, i) = Clc] +1,
where C[c| is the index just before the first occurrence of ¢ in F, also called the
accumulative count C[c| = |{i | F[i] < ¢}|.

rank can trivially be implemented in O(n) space and O(1) time by just storing for each
index 7 its rank. A more succinct representation is not so easy, but with some effort
it is possible to achieve with almost constant time access O(loglog, o) where w is
the computer word size. Details are omitted here, see e.g. Belazzougui and Navarro
(2015).

105

14 Using the BWT Efficiently

With these two little additions, several applications can be implemented very efficiently,
for example:

Count: Return the number of occurrences of a pattern p in ¢, by iterated backward search,
in O(|p|) time.

Locate: Return the index in ¢ of a given index in L, by counting the number of LF-
mappings until the end of string marker $ is reached, in O(n) time. For long strings
this is time-inefficient. The other extreme would be to store the rank for every index
7 as indicated above, which is space-inefficient. A good compromise is to store a few
checkmarks for a subset of the indices in L, so that the series of LF-mappings will
never be too long.

14.2 The r-Index

Gagie, Navarro and Prezza (2018) studied the problem of performing rank() and select()
directly on the run length compressed BWT, which led to the r-index datastructure. In
fact, it is quite a complicated construct consisting of several bitvectors, sparse bitvectors,
wavelet trees and further auxiliary datastructures. The result, however, is quite impres-
sive, as the r-index requires only O(r) space and can perform the LF-mapping in almost
constant time. (A variant requires almost O(r) space and performs the LF-mapping in
constant time.) Details go beyond the scope of this course.

14.3 The MOVE datastructure

A datastructure that achieves even better results than the r-index, while being conceptu-
ally much simpler, is MOVE (Nishimoto and Tabei, 2021; Zakeri et al., 2024). The central
observation here is that — because of the central property of the BWT (Observation 70) —
every run R in L = bwt(¢) is also a run in F' (although the runs in F' are usually longer
than those in L).

Example 75 Let t = aacaabaaabaa$ (n = 13), then L = bwt(¢) = aabbac$aaaaaa (r =
6). The MOVE datastructure is shown in Figure 14.1. It is easy to see that the runs in L
(denoted by circled numbers) can be found in F' in permuted order. <

The MOVE datastructure stores for each run @, 1 <i <7, of the BWT four components.
The first two components, ¢ and ¢, describe the run itself:

e (i).c is the (repeated) character of run (2).

e (.0 is the length of run ().

The other two components, to-run and oy, describe properties of the head (first element)

of run ():

e ().to-run is the run inside which the head of (i) arrives in L after one LF-mappping.

106

14.3 The MOVE datastructure

F L
Gls] 1 [a|@®
@aZa
a3b@
@a4b
@a5a@
aGC@
a| 7 /%10
a8a@
al|l 9 |a
a| 10 | a
@b 11 | a
b| 12 | a
@c 13 | a

Figure 14.1: MOVE datastructure of the string s$ = aacaabaaabaa$.

e (i.or, is the offset of the head of (i) inside ().to-run after the LF-mapping.

Example 75 (cont’d) The MOVE datastructure for ¢ = aacaabaaabaa$ looks as follows:

head of run

to-run | oy,

-
e
=]

SR = = NNS

@EEOOO
©OGEO

<

A position p in column L of the BWT is stored as a pair p = ((4),0) where (i) is the
position’s run index in L and o, 0 < o < (1).£ is the offset of the position inside the run.
MOVE is the operation that maps a position p in L representing text index t[j] to position
p* in L representing its left neighbor, ¢[j — 1]. (Note the similarity to LF-mapping: LF-
mapping starts at a position in F', then “horiziontally” maps to L and finally back to the
corresponding run index in F; while MOVE starts at a position in L, then maps to the
corresponding run index in F' and finally “horizontally” back to L.) A MOVE can be
performed efficiently without decompressing the BWT as follows:

MOV E((),0) = ff(G).to-run, 0 — ().or)

where
if 0* < ()4

@
(@, 0") = 5(7 o* —(@).L) otherwise

107

14 Using the BWT Efficiently

Note that the “fast forward” function ff is necessary to ensure that at the end the new
position p* = (@, 0*) lies inside its run @ Unfortunately, this incremental approach is
asymptotically not optimal. An alternative that guarantees a constant number of steps per
MOVE-mapping (by splitting some runs so that the incremental search terminates quickly)
and therefore is asymptotically optimal exists as well (Nishimoto and Tabei, 2021) but is
slower in practice (Zakeri et al., 2024).

Example 75 (cont’d) Consider the string matching task of counting the number of oc-
currences of pattern aaba in text aacaabaaabaa$. As for the regular BWT we perform
backward search and iterated MOVE operations.

We start with the last letter of the pattern a. The interval containing all occurrences
of a in the text is delimited by the topmost position p{ = p'(a) = ((0,0) of an a
in L and the bottommost position p = pt(a) = ((6),5) of an a in L. (The position
pairs (p'(c),p*(c)) can easily be preprocessed for each letter ¢ of the alphabet.) Af-
ter one MOVE operation we reach MOV E(p{) = ((0),1) and MOVE(p{) = ((6),2).
While MOV E(p]) = MOVE((),0) = (D), 1) = (), 1) gives this result immediately,
MOVE(pt) = MOVE((),5) initially gives ff(3),5), which then gives ff((@),4), then
ff((5), 3) and finally f((6), 2) = ((6), 2).

Once we have performed the two MOV E operations of the upper and lower bounds, we
test if the letters corresponding to these positions represent the character b (the second
last letter of our pattern). If not, we proceed down (with the upper position p') and up
(with the lower position p;) until an occurrence of the letter b is reached. This can be done
run-wise because all letters in a run are the same. We reach the positions pj = (®,0)
and p%- = (®,1). Proceeding in the same way with the next pattern character a, we
reach p3 = ((6),3) and p3- = ((6),4) and finally with the first pattern character a we reach
pi = ((6),0) and p; = ((6),1). That means, the pattern aaba occurs two times in the
text. <

It is also possible to efficiently track the current text positions during the LF-mapping
so that the position of a matching pattern can be reported as well. This, however, goes
beyond the scope of these lecture notes.

108

15 Whole Genome Alighment

Because more and more prokaryotic and eukaryotic genomes are sequenced, and their
comparison reveals much information about their function and evolutionary history, the
alignment of whole genomes is in general very valuable.

We start this chapter with a few general remarks on whole genome alignment:

1. The alignment of whole genomes makes sense only if there is a global similarity
between the compared genomes. If the genomes do not have a common layout, other
methods like genome rearrangement studies (Gascuel, 2005) should be applied.

2. In principle, like in the case of “normal” alignments, alignments of two or more whole
genomes could be computed by dynamic programming. Since one deals with large
amounts of data, though, the quadratic (or exponential in the multiple case) time
complexity leads to extremely long computation times.

3. The previous point is why in practice one needs to apply faster methods that are spe-
cialized for similar DNA sequences, as they often appear in closely related genomes.
Most of the commonly used methods for whole genome alignment perform two suc-
cessive steps. First, identical (or highly similar) subregions (seeds) between the
input genomes are identified that in a second step are then connected (chained) in
the best possible way. This procedure may be applied recursively to smaller, not yet
aligned regions.

In this chapter we will explain standard solutions for both steps in the following two
subsections. Then we describe a few of the more popular tools for whole genome alignment,
MUMmer (Delcher et al., 1999, 2002; Kurtz et al., 2004) and MAUVE (Darling et al.,
2004).

15.1 Seed Detection

In whole genome alignment, two types of seeds are in popular use: Maximal unique matches
(MUMs) and maximal exact matches (MEMs). Both may be defined for two or multiple
sequences. We begin with MUMs that have already been studied in Section 11.4 for the
case of k = 2 sequences.

Definition 76 A MUM (Maximal Unique Match) is a substring w that occurs exactly once
in each sequence s;, 1 < i < k, and that can not simultaneously be extended to the left or
to the right in every sequence. A MUM in more than two sequences is sometimes called a
multiMUM.

109

15 Whole Genome Alignment

The definition of MEMs is less restrictive as they may occur several times in the same
sequence:

Definition 77 A MEM (Maximal Exact Match) is a substring w that occurs in all se-
quences $1, S2,...,S; and that can not simultaneously be extended to the left or to the
right in every sequence. A MEM in more than two sequences is sometimes called a multi-
MEM.

Formally, a MEM is a tuple (i1, ..., ix; L) such that w = s1[i1,91+L—1] = safia, io+L—1] =
ce. = Sk[ik,ik + L — 1], ’{Sl[il — ”,82[2'2 - 1], PN Sk[ik — 1]}’ > 2 and |{Sl[i1 + L],Sg[ig +
L],...,sglir + L]} > 2. A MUM, in addition, has no other occurrence of w in any of the
input sequences si, S9,...,S;. Often, a minimum length ¢ is added to this definition, so
that only MEMs (or MUMs) are of interest for which L > /.

Both MUMs and MEMs can be efficiently found using the generalized suffix tree T" of the
sequences s1, S, . . ., S introduced in Section 10.3.

We begin with multiMEMSs: It is easy to see that there is a correspondence between the
internal nodes of T' that have, in their subtree, at least one leaf for each input sequence,
and the right-maximal exact matches. These nodes can be found by a bottom-up traver-
sal of T, storing at each node the set of input sequences for which leaves exist in the
corresponding subtree and their positions in the input sequences. In addition, to test for
left-maximality, one has to test that there are no extensions possible to the left by looking
up the character immediately to the left of their start positions in the input sequences.
This simple algorithm takes O(n+kr) time where n = ny +ng+- - -+ ny is the total length
of all £ genomes and r is the number of right-maximal exact matches. But also algorithms
that run in O(n) time are possible with some enhancement of the data structure.

MUDMs have the additional restriction that in the subtree below the endpoint of the MUM,
each sequence s1, So, . . ., Sp must correspond to exactly one leaf. Also MUMs of k sequences
can be found in O(n) time.

15.2 Chaining

Once a set of seeds has been obtained, they have to be connected to form the genome
alignment. This step is called chaining. It can be modeled as the following graph problem:
Let R = {r1,...,r.} be the set of z seeds found in the first phase of the algorithm. Define
a partial order < on seeds where r; < r; if and only if the end of seed r; is smaller
than the beginning of seed r; in both s; and so. The directed, vertex-weighted graph
G = (V, E) contains the vertex set V' = R U {start,stop} and an edge (r; — r;) € E if
and only if r; < r;. Moreover, (start — ;) € E and (r; — stop) € E for all 1 <i < z.
The weight w(v) of a vertex v is defined as the length of the seed represented by v, and
w(start) = w(stop) = 0.

Problem 78 (Chaining Problem) Find a chain ¢ = (riy, 7, 7iy, - - - Ty, Tigyy), With 7y =
start and 7;,,, = stop, where two neighboring vertices are connected by an edge (r;; —
7i,,,) for all 0 < j < £, of heaviest weight w(c) := 25:1 w(ry;).

110

15.3 Collinear Multiple Genome Alignment (MUMmer)

In principle, one could use Dijkstra’s algorithm for finding shortest paths in a weighted
graph for solving the chaining problem. This would take O(|V|?) time, or O(|V|log|V|)
time using some additional tricks. It is well known, however, that in an acyclic graph a
path of maximum weight can be found in O(|V| + |E|) time by topologically sorting the
vertices and then applying dynamic programming. Here, this easily yields an O(z2) (or
O(zlog z)) time algorithm for the chaining. However, since the seeds can be linearly or-
dered, using a heaviest increasing subsequence algorithm the computation can be reduced
further (Abouelhoda and Ohlebusch, 2005).

15.3 Collinear Multiple Genome Alignment (MUMmer)

A popular alignment program for two whole genomes is MUMmer whose first (Delcher
et al., 1999) and second (Delcher et al., 2002) versions differ only slightly.

The general strategy of the overall algorithm is as follows:

1. Given k genomes s1, ..., s, all MUMs are found using the generalized suffix tree as
described in the previous section.

2. The chain of compatible MUMs that maximizes the weight along its path is selected,
where a set of MUMSs is compatible if the MUMs can be ordered linearly.

3. Short gaps (up to 5000 base pairs) are filled by ordinary alignment. Long gaps
remain unaligned.

Overall, the first two phases take time O(|s1|+- - +|sg|+22) or O(|sy|+- - +|sk| +2log 2),
depending on the time needed for chaining. The time used by the last phase depends on
the size of the remaining gaps and the used algorithm. In the worst case the last phase
dominates the whole procedure, for example when no single MUM was found. But in a
typical case, where the genomes are of considerable global similarity, not too many and
not too large gaps should remain such that the last phase does not require too much time.

One design decision in MUMmer 1 and 2 was to use MUMs as output of the filtration
phase. The advantage is that this gives reliable anchors since the uniqueness is a strong hint
that the regions in the two genomes indeed correspond to each other, i.e. are orthologous.
However, if more than two genomes are compared, it is unlikely that there exist many
MUMs that are present and unique in all considered sequences.

MUMumer in its third version (Kurtz et al., 2004) is therefore based on multi-MEMs, as
the authors have noted that these are less restrictive and the chaining does not become
more complicated.

15.4 Multiple Genome Alignment with Rearrangements
(MAUVE)

Another genome alignment program described here is MAUVE (Darling et al., 2004).
This program uses multi-MUMs as seeds, but can also deal with rearrangements, i.e., its

111

15 Whole Genome Alignment

chaining algorithm is more general than in MUMmer, as it is not restricted to finding one
chain of collinear seeds. Instead it looks for several locally collinear blocks of seeds. Among
these blocks, by a greedy selection procedure the most reliable blocks are selected and
assembled into a global “alignment”. MAUVE is applied with less restrictive parameters
recursively to the regions not aligned in the previous phase. It can be summarized as
follows:

1. Find local alignments (multiMUMs).
2. Use the multiMUMs to calculate a phylogenetic guide tree.

3. Select a subset of the multiMUMs to use as anchors — these anchors are partitioned
into locally collinear blocks (LCBs).

4. Perform recursive anchoring to identify additional alignment anchors within and
outside each LCB.

5. Perform a progressive alignment of each LCB using the guide tree.

MAUVE can be found (but is no longer actively maintained) at https://darlinglab.
org/mauve/mauve.html.

112

Bibliography

M. I. Abouelhoda and E. Ohlebusch. Chaining algorithms for multiple genome comparison.
J. Discr. Alg., 3:321-341, 2005.

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its ap-
plications to genome analysis. In Proceedings of the Second International Workshop
on Algorithms in Bioinformatics (WABI 2002), volume 2452 of LNCS, pages 449-463,
2002.

D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data Com-
pression, Suffiz Arrays, and Pattern Matching. Springer Verlag, 2008.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local Alignment Search
Tool (BLAST). J. Mol. Biol., 215:403-410, 1990.

S. F. Altschul, T. L. Madden, A. A. Schéffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic Acids Res., 25(17):3389-3402, Sep 1997.

D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing se-
quences. ACM Trans. Alg., 11(4):1-21, 2015.

B. Buchfink, C. Xie, and D. Huson. Fast and sensitive protein alignment using DTAMOND.
Nat. Methods, 12:59-60, 2015.

M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report TR, 124, Digital Equipment Corporation, Palo Alto, CA, 1994.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM
J. Appl. Math., 48(5):1073-1082, 1988.

J.-M. Claverie and C. Notredame. Bloinformatics for Dummies. John Wiley & Sons (For
Dummies series), 2nd edition, 2007.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2nd edition, 2001.

A. C. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: Multiple alignment
of conserved genomic sequence with rearrangements. Genome Res., 14(7):1394-1403,
2004.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucleic Acids Res., 27(11):2369-2376, 1999.

113

Bibliography
A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-scale

genome alignment and comparison. Nucleic Acids Res., 30(11):2478-2483, 2002.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge
University Press, 1998.

R. C. Edgar. Muscle: a multiple sequence alignment method with reduced time and space
complexity. BMC Bioinformatics, 5:113, 2004a.

R. C. Edgar. Muscle: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Res., 32(5):1792-1797, 2004b.

I. Elias. Settling the intractability of multiple alignment. J. Comp. Biol., 13(r72):1323—
1339, 2006.

M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th Annu.
Symp. Found. Comput. Sci., FOCS 1997, pages 137-143, New York, NY, 1997. IEEE
Press.

D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J. Mol. Evol., 25:351-360, 1987.

P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552-581, 2005.

W. M. Fitch. Toward defining the course of evolution: Minimum change for a specific tree
topology. Syst. Zool., 20(4):406-416, 1971.

T. Gagie, G. Navarro, and N. Prezza. Optimal-time text indexing in bwt-runs bounded
space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pages 1459-1477, 2018.

O. Gascuel, editor. Mathematics of Evolution and Phylogeny. Oxford University Press,
2005.

R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees. Softw.
Pract. Exper., 33(11):1035-1049, 2003.

O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol., 162:
705-708, 1982.

D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error
bounds. Bull. Math. Biol., 55(1):141-154, 1993.

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
1997.

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA, 89:10915-10919, 1992.

D. G. Higgins and P. M. Sharp. Clustal V: Improved software for multiple sequence
alignment. Comput. Appl. Biosci., 8:189-191, 1992.

114

Bibliography

M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa. Comprehensive study on iterative
algorithms of multiple sequence alignment. Comput. Appl. Biosci., 11(1):13-18, 1995.

T. J. P. Hubbard, A. M. Lesk, and A. Tramontano. Gathering them into the fold. Nat.
Structural Biology, 4:313, 1996.

J. Karkkéinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comput. Sci.,
387(3):249-257, 2007.

J. Karkkéinen and P. Sanders. Simple linear work suffix array construction. In Proceed-
ings of the 13th International Conference on Automata, Languages and Programming
(ICALP), volume 2719 of LNCS, pages 943-955, 2003.

R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns
in strings, trees and arrays. In Conf. Proc. 4th Annu. ACM Symp. Theory Comput.,
STOC 1972, pages 125-136, 1972.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Proceedings of the 12th
Symposium con Combinatorial Pattern Matching (CPM), volume 2089 of LNCS, pages
181-192, 2001.

J. Kececioglu. The maximum weight trace problem in multiple sequence alignment. In
Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching, CPM
1993, volume 684 of LNCS, pages 106-119, 1993.

J. Kececioglu and D. Starrett. Aligning alignments exactly. In Proc. of the Eighth Annual
International Conference on Computational Molecular Biology, RECOMB 2004, pages
85-96, 2004.

B. Knudsen. Optimal multiple parsimony alignment with affine gap cost using a phy-
logenetic tree. In Proceedings of the Third International Workshop on Algorithms in
Bioinformatics, WABI 2008, volume 2812 of LNBI, pages 433-446, 2003.

S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S. L.
Salzberg. Versatile and open software for comparing large genomes. Genome Biol., 5:R
12, 2004.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biol., 10:R 25, 2009.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(8):707-710, 1966.

H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics, 25(14):1754-1760, 2009.

H. Li and R. Durbin. Fast and accurate long-read alignment with burrows-wheeler trans-
form. Bioinformatics, 26(5):589-595, 2010.

D. Maier and J. A. Storer. A note on the complexity of the superstring problem. Technical
Report 233, Department of Electrical Engineering and Computer Science, Princeton
University, 1977.

115

Bibliography

U. Manber and G. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Computing, 22(5):935-948, 1993.

E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23(2):
262272, 1976.

D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor
Laboratory Press, 2nd edition, 2004.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48(3):443-453,
1970.

T. Nishimoto and Y. Tabei. Optimal-time queries on BWT-runs compressed indexes. In
Proceedings of ICALP 2021, 2021. Paper number 101.

C. Notredame, D. G. Higgins, and J. Heringa. T-Coffee: A novel method for fast and
accurate multiple sequence alignment. J. Mol. Biol., 302:205-217, 2000.

N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol. Biol. Evol., 4(4):406-425, 1987.

D. Sankoff. Minimal mutation trees of sequences. SIAM J. Appl. Math., 28(1):35-42,
1975.

J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS
Publishing Company, 1997.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam,
M. Remmert, J. Soding, et al. Fast, scalable generation of high-quality protein multiple
sequence alignments using clustal omega. Mol. Syst. Biol., 7(1), 2011.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. .J.
Mol. Biol., 147(1):195-197, 1981.

J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene COM-
BIS, 211(2):GC45-GC56, 1998.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res., 22(22):4673-4680, 1994.

J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. The
ClustalX windows interface: Flexible strategies for multiple sequence alignment aided
by quality analysis tools. Nucleic Acids Res., 24:4876-4882, 1997.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comp. Biol.,
1(4):337-348, 1994.

M. S. Waterman. Introduction to Computational Biology. Chapman and Hall, 1995.

116

Bibliography
M. S. Waterman, T. F. Smith, and W. A. Beyer. Some biological sequence metrics. Adv.
Math., 20:367-387, 1976.

M. S. Waterman, S. Tavaré, and R. C. Deonier. Computational Genome Analysis: An
Introduction. Springer, 2nd edition, 2005.

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Annual
Symposium on Switching and Automata Theory, pages 1-11. IEEE, 1973.

M. Zakeri, N. K. Brown, O. Y. Ahmed, T. Gagie, and B. Langmead. Movi: A fast and
cache-efficient full-text pangenome index. iScience, 27(111464), 2024.

117

