
Gene Family-free Genome
Comparison

Ph. D. Thesis
submitted to the

Faculty of Technology,
Bielefeld University, Germany

for the degree of Dr. rer. nat.

by

Daniel Dörr

March, 2015

Supervisor:
Prof. Dr. Jens Stoye

Referees:
Prof. Dr. Jens Stoye
Prof. Dr. David Sankoff
Prof. Dr. Cedric Chauve

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706.
Printed on non-aging paper according to DIN-ISO 9706.

Zusammenfassung

Die rechnergestützte vergleichende Genomik gewährt wertvolle Einsichten in die ge-
meinsame und individuelle evolutionäre Historie von lebenden und ausgestorbe-
nen Spezies. Genome zu vergleichen bedeutet deren Unterschiede zu bestimmen,
die durch Mutationen in ihrer evolutionären Vergangenheit entstanden sind.

Im Bereich der Genomevolution differenziert man zwischen Punktmutationen, Ge-
nomumordnungen und Änderungen des Gengehalts von Genomen. Punktmutationen
verändern ein oder wenige aufeinanderfolgende Nukleotide in der DNA-Sequenz.
Genomumordnungen ändern die Reihenfolge und Aufteilung von Genen in chro-
mosomale Sequenzen. Der Gengehalt wird durch die Evolution von Genfamilien
beeinflusst, welche zu Genduplikationen oder dem Verlust von Genen führt.

Studien zur Erforschung von Genomumordnungen zwischen Genomen setzen die
Kenntnis der evolutionären Verhältnisse zwischen deren Genen voraus. Mittels des
biologischen Konzepts der Homologie kann die Menge aller Gene in Genfamilien un-
terteilt werden: Alle Gene in einer Genfamilie sind paarweise homolog zueinander,
was bedeutet, dass sie von einer gemeinsamen Ursequenz abstammen. Homologien
zwischen Genen sind in der Regel unbekannt und werden daher häufig mit rechner-
gestützten Methoden vorhergesagt. Dazu werden Sequenzähnlichkeiten zwischen
Genen oder andere Ähnlichkeiten in den Eigenschaften ihrer Genprodukte quanti-
fiziert. Allerdings ist die Vorhersage von Homologien häufig unzuverlässig, was zu
Fehlern in einer anschließenden Studie von Genomumordnungen führt.

Diese Doktorarbeit verfolgt einen recht jungen Forschungszweig mit der Zielset-
zung, Fehler durch falsche oder unvollständige Vorhersagen von Genfamilien in der
Untersuchung von Genomumordnungen zu vermeiden. Dazu werden neue rechner-
gestützte Methoden zur Erforschung von Genomumordnungen entwickelt, die die
Kenntnis von Genfamilien nicht voraussetzen. Dieser Ansatz, auch genannt genfa-
milienfreier Genomvergleich, ist innovativ, da Unterschiede zwischen Genen, welche
durch Punktmutationen entstanden sind, in der Untersuchung von Genomumord-
nungen berücksichtigt werden. Anstelle von vorhergesagten Genfamilien greift der
vorgestellte Ansatz direkt auf Genähnlichkeiten zurück, welche üblicherweise zur
Vorhersage von Genfamilien verwendet werden.

1

Die Endpunkte zweier Gene, die auf einer chromosomalen Sequenz nebeneinan-
der liegen, bilden eine Nachbarschaft. Die Anzahl konservierter Nachbarschaften, das
heißt Nachbarschaften, welche zwei untersuchten Genomen gemein sind, können
als Maß zur Quantifizierung ihrer Ähnlichkeit verwendet werden. Wenn der Genge-
halt beider Genome identisch ist, dann ist die Anzahl konservierter Nachbarschaften
das duale Maß zur Breakpoint-Distanz. Diese Doktorarbeit untersucht das Problem
zur Berechnung der Anzahl konservierter Nachbarschaften im Rahmen des genfa-
milienfreien Genomvergleichs. Dazu wird die Berechnungskomplexität analysiert
und es werden exakte und heuristische Verfahren entwickelt, die den paarweisen
Genomvergleich ermöglichen.

Des Weiteren wird die Problematik der Rekonstruktion von Ursequenzen im
Rahmen des genfamilienfreien Genomvergleichs betrachtet. Die vorliegende Arbeit
untersucht das Problem, ein viertes Genom, Median genannt, anhand drei gegebe-
ner Genome zu konstruieren, was die Anzahl paarweiser konservierter Nachbar-
schaften maximiert. Hierbei wird das Modell des gemischten multichromosomalen
Breakpoint-Medians verallgemeinert. Anschließend wird die NP-Schwere des Pro-
blems bewiesen und ein exakter Algorithmus zur Berechnung einer Lösung vor-
gestellt.

Mit der Länge des evolutionären Zeitraums steigt die Zahl der Genomumord-
nungen, welche die Genordnung zunehmend durcheinanderbringen. Aus diesem
Grund sind Studien über evolutionär weit entfernte Genome, die konservierte Nach-
barschaften identifizieren, nicht aufschlussreich. Dennoch können verallgemeinerte
Definitionen konservierter Genordnung ein schwächeres, aber dennoch vorhande-
nes Signal gemeinsamer Genordnung auffangen. Dies ist Gegenstand eines For-
schungszweigs, welcher sich mit der Identifikation syntenischer Bereiche beschäftigt.
Wenn Genfamilien bekannt sind, dann lässt sich eine chromosomale Sequenz als
Zeichenfolge (String) über dem Alphabet von Genfamilienbezeichnungen darstel-
len. Ein Paar von Intervallen in zwei Strings wird Common Intervals genannt, wenn
ihre Zeichenmenge identisch ist. Auf dieser Definition beruht ein Modell zur Bestim-
mung syntenischer Bereiche in zwei oder mehr Genomen. In dieser Doktorarbeit
wird die Definition von Common Intervals auf Indeterminate Strings erweitert. Indeter-
minate Strings sind Sequenzen, in denen jede Position aus einer nicht-leeren Zeichen-
menge besteht. In der vorliegenden Arbeit werden mehrere Modelle von Common
Intervals für Indeterminate Strings vorgestellt und effiziente Algorithmen für das Auf-
finden entsprechender Intervallpaare in zwei Indeterminate Strings vorgestellt. Die
neu entwickelten Algorithmen werden anschließend dazu verwendet, syntenische
Bereiche im Rahmen des genfamilienfreien Genomvergleichs zu bestimmen.

Alle vorgestellten Modelle und Algorithmen werden an simulierten oder biologi-
schen Datensätzen evaluiert und ihre Eignung für den genfamilienfreien Genomver-
gleich untersucht.

2

Abstract

Computational comparative genomics offers valuable insights into the shared and indi-
vidual evolutionary histories of living and extinct species and expands our under-
standing of cellular processes in living cells. Comparing genomes means identifying
differences that originated from mutational modifications in their evolutionary past.

In studying genome evolution, one differentiates between point mutations, genome
rearrangements, and content modifications. Point mutations affect one or few con-
secutive nucleotide bases in the DNA sequence, whereas genome rearrangements
operate on larger genomic regions, thereby altering the order and composition of
genes in chromosomal sequences. Lastly, content modifications are a result of gene
family evolution that causes gene duplications and losses.

Genome rearrangement studies commonly assume that evolutionary relationships
between all pairs of genes are resolved. Based on the biological concept of homology,
the set of genes can be partitioned into gene families. All genes in a gene family
are homologous, i.e., they evolved from the same ancestral sequence. Homology
information is generally not given, hence gene families are commonly predicted
computationally on the basis of sequence similarity or higher order features of their
gene products. These predictions are often unreliable, leading to errors in subse-
quent genome rearrangement studies.

In an attempt to avoid errors resulting from incorrect or incomplete gene family
assignments, we develop new methods for genome rearrangement studies that do
not require prior knowledge of gene family assignments of genes. Our approach,
called gene family-free genome comparison, is innovative in that we account for dif-
ferences between genes caused by point mutations while studying their order and
composition in chromosomes. In lieu of gene family assignments, our proposed
methods rely on pairwise similarities between genes. In practice, we obtain gene
similarities from the conservation of their protein sequences.

Two genes that are located next to each other on a chromosome are said to be
adjacent, their adjoining extremities form an adjacency. The number of conserved
adjacencies, i.e., those adjacencies that are common to two genomes, gives rise to
a measure for gene order-based genome similarity. If the gene content of both

3

genomes is identical, the number of conserved adjacencies is the dual measure of the
well-known breakpoint distance. We study the problem of computing the number of
conserved adjacencies in a family-free setting, which relies on pairwise similarities
between genes. We analyze its computational complexity and develop exact and
heuristic algorithms for its solution in pairwise comparisons.

We then advance to the problem of reconstructing ancestral sequences. Given
three genomes, we study the problem of constructing a fourth genome, called the
median, which maximizes a family-free, pairwise measure of conserved adjacencies
between the median and each of the three given genomes. Our model is a family-
free generalization of the well-studied mixed multichromosomal breakpoint median. We
show that this problem is NP-hard and devise an exact algorithm for its solution.

Gene orders become increasingly scrambled over longer evolutionary periods of
time. In distant genomes, gene order analyses based on identifying pairs of con-
served adjacencies might no longer be informative. Yet, relaxed constraints of gene
order conservation are still able to capture weaker, but nonetheless existing rem-
nants of common ancestral gene order, which leads to the problem of identifying
syntenic blocks in two or more genomes. Knowing the evolutionary relationships
between genes, one can assign a unique character to each gene family and represent
a chromosome by a string drawn from the alphabet of gene family characters. Two
intervals from two strings are called common intervals if the sets of characters within
these intervals are identical. We extend this concept to indeterminate strings, which
are a class of strings that have at every position a non-empty set of characters. We
propose several models of common intervals in indeterminate strings and devise
efficient algorithms for their corresponding discovery problems. Subsequently, we
use the concept of common intervals in indeterminate strings to identify syntenic
regions in a gene family-free setting.

We evaluate all our proposed models and algorithms on simulated or biological
datasets and assess their performance and applicability in gene family-free genome
analyses.

4

Acknowledgements

For the past four years of PhD student life, I was supported by many people who I
now like to express my sincere gratitude.

First of all, I am genuinely thankful to my advisor, Jens Stoye, who introduced me
to this fascinating project. He taught me how to do research and generously shared
his deep knowledge and expertise that continues to inspire me also in personal life.
His endless support made the successful completion of this work possible. I was
indeed fortunate to have him as my advisor.

I am deeply thankful to Cedric Chauve, who hosted me for three months at the
Simon Fraser University in spring 2014 and committed precious time and energy to
my project and to me. His critical insights guided me through major parts of this
thesis.

My thanks to James H. Kaufman, in who’s lab I spent the summer of 2012 at
the IBM Almaden Research Center in San Jose. James introduced me to the field
of healthcare informatics and taught me a different approach to research, both of
which I am very thankful for.

I would like to thank current and former members of the Genome Informatics
group, in particular Pedro Feijão for many valuable discussions, especially in the
recent months, Roland Wittler for reviewing, Annelyse Thévenin and Katharina
Jahn for being helpful co-authors and inspiring mentors.

I am indebted to many people that influenced me on the long path which shaped
my decision to study bioinformatics. In particular, I would like to thank my father,
who raised my interest in computers at a young age, Simon Pamiés for introducing
me to computer programming, and my inspiring biology teacher Martin Heilen —
if it were not for him, I certainly would not have studied anything related to biology.

My special thanks go to ’Die WG’: Anne Reh, Christian Munier, David Ries, Flo-
rian Sprengel, and Julian Mayland. The three years of living with you in a shared
flat have been fantastic. Without you, being a PhD student would not have been
as enjoyable as it truly was! I am indebted to my parents who supported me in all
those years. I especially thank my wonderful girlfriend Vera Surall for her endless
love, care, and encouragement.

5

Finally, I would like to acknowledge funding from the CLIB-Graduate Cluster
Industrial Biotechnology that granted me a three year scholarship and supplied me
with generous travel funds. My visit in Cedric Chauve’s lab was funded by the
German Academic Exchange Service (DAAD), and for the past ten months I was
funded by a scholarship of the Genome Informatics group.

6

Contents

1 Introduction 1

2 Background 5
2.1 Genetic information . 5
2.2 Evolutionary modifications . 7
2.3 Evolutionary relationships . 8
2.4 Genome model . 11

2.4.1 Genomes, chromosomes, and genes 11
2.4.2 Telomeres . 13

2.5 The Family-free Principle . 14

3 Family-free adjacencies 17
3.1 Breakpoint distance . 17
3.2 Pairwise family-free adjacencies . 18
3.3 Family-free adjacencies for more than two genomes 20
3.4 Computational complexity of pairwise family-free adjacencies 21

3.4.1 Reduction from exemplar breakpoint distance problem 22
3.4.2 Maximum matchings in solutions to problem FF-Adjacencies . 23

3.5 Bounds . 24
3.6 An exact solution to problem FF-Adjacencies 25
3.7 Speeding up computations . 28

3.7.1 Identifying anchors in the gene similarity graph 29
3.7.2 Remaining subgraph test . 33

3.8 A heuristic solution to problem FF-Adjacencies 35
3.9 Experimental results and discussion . 37

3.9.1 Simulated genome evolution . 38
3.9.2 Runtime . 39
3.9.3 Quality of orthology assignments 40
3.9.4 Experimental results on a biological dataset 43

i

3.9.5 Discussion . 45

4 Family-free median 47
4.1 Gene family-based median of three . 47
4.2 A family-free generalization . 48
4.3 Complexity of problem FF-Median . 51

4.3.1 Reduction . 52
4.4 An exact solution to problem FF-Median 56
4.5 The effect of gene family evolution on family-free medians 58
4.6 Solving problem FF-Adjacencies for three genomes 60

4.7.1 Simulations . 64
4.7.2 Experiments on a biological dataset 66
4.7.3 Discussion . 68

5 Family-free synteny 71
5.1 Generalized adjacencies . 71
5.2 Synteny and gene clusters . 72
5.3 Family-free syntenic blocks . 73

5.3.1 A naïve approach . 73
5.3.2 A practical approach . 74

5.4 Common intervals in indeterminate strings 75
5.5 Discovering weak common intervals . 79

5.5.1 Updating table Int . 84
5.5.2 Computing table Succ . 86

5.6 Discovering strict common intervals . 86
5.7 Discovering approximate weak common intervals 89
5.8 A runtime heuristic for discovering approx. weak common intervals . 92
5.9 Results and Discussion . 95

5.9.1 Gene family-based dataset . 95
5.9.2 Gene family-free dataset . 95
5.9.3 Comparison with RegulonDB . 98
5.9.4 Discussion . 99

6 Conclusion and outlook 103

Bibliography 109

ii

Chapter 1
Introduction

With today’s abundance of electronically available genomic sequences, the field of
computational comparative genomics continuously contributes decisive insights to the
understanding of genome evolution of living and extinct species. Introduced by
David Sankoff [92, 96] and Joseph H. Nadeau and Benjamin A. Taylor [78], the field
gives rise to a broad variety of in silico methods to study the structural organization
of genomes. Such studies do not only lead to improved knowledge of the species’
phylogeny, but also hint at interactions within and between sets of genes by means
of their involvement in metabolic and regulatory networks.

Genomes evolve through various types of mutations: point mutations affect one
or few nucleotide bases; genome rearrangements alter the order and partition of
genes into chromosomes; genes become duplicated or lost as a result of gene fam-
ily evolution; lastly, whole genome effects such as duplications of chromosomes or
whole genomes dramatically alter the gene content of the organism. Due to the
varying mechanisms of these mutations and their characteristic impact on genomic
sequences, individual lines of research formed over the past decades, each special-
izing in the study of a certain type of mutation.

Initial approaches to study genome rearrangements considered pairwise compar-
isons with well identified one-to-one relationships between orthologous genes [92],
for many of which polynomial time algorithms for computing distances and evo-
lutionary scenarios could be designed [15, 16, 47, 94, 115]. David Sankoff initiated
formulations and algorithms for genome rearrangement problems with duplicated
genes originating from unrestricted homology assignments [93], quickly followed
by the outline of a general approach that would consider both gene orders and gene
trees as input to genome rearrangement problems [97]. Since then, genome rear-
rangement with unequal gene content, where genomes are represented by signed
sequences, has been intensively explored; for reviews see [30, 41].

Extending pairwise genome rearrangement studies to three or more genomes
leads to the problem of reconstructing ancestral gene orders. Thereby, one differen-

1

Chapter 1. Introduction

tiates between the small parsimony problem, if a phylogeny is given along which one
aims to construct the most parsimonious gene orders of branching ancestral states,
and the big parsimony problem, where the phylogeny itself is subject to optimiza-
tion, too. Yet small parsimony problems under most rearrangement distances are
already hard problems, even for the simplest cases that ask for the construction of a
median genome from three known gene orders, given one-to-one orthology assign-
ments [17, 25, 29, 83, 94, 114]. Notable exceptions include the mixed multichromosomal
breakpoint median [106] and the median under the single cut or join distance [40]. De-
spite the computational challenges, software tools such as MGR [25], MGRA [2],
and GRAPPA [76] have been developed and enable the reconstruction of ancestral
gene orders within acceptable running times in practice. Sankoff et al. initiated in
[95] the study of ancestral gene order reconstruction under a more general genome
model that allows genomes to exhibit unequal gene content, including duplicated
genes. However, this branch of research remains largely unexplored up to a few
exceptions [97, 106, 116].

Another line of research studies broader notions of conserved gene order by iden-
tifying syntenic blocks, which are pairs of genomic segments of similar gene content,
whereby no or only weak constraints are imposed on the order of the contained
genes. If, in addition, these genes share functional relationships, syntenic blocks are
also called gene clusters. Initial efforts to discover syntenic blocks required the identi-
fication of one-to-one relationships between orthologous genes [14, 49, 50], similar to
early rearrangement studies. Most of these approaches were subsequently adapted
to a more general genome model permitting gene duplications and losses [35, 48, 99].

All of the above methods, that we call gene family-based, require prior gene family
assignments. However, biological gene families are difficult to assess; commonly,
they are predicted computationally. The outcome of such efforts depends heavily
on parameter choices in sequence comparison, similarity quantification and cluster-
ing. These parameters are user-controlled and influence the size and granularity of
computed gene families. In particular, when genes within biological gene families
are largely diverged, computational means may not be able to resolve gene family
assignments accurately [42]. Consequently, errors are introduced into the primary
dataset which deteriorate subsequent analyses.

In an attempt to avoid these errors, we propose new methods for genome com-
parison that do not require prior gene family assignments.

Thesis overview

In this thesis, we study three different rearrangement problems and introduce their
family-free counterparts.

2

After a short recapitulation of biological concepts and the introduction of basic
notations in Chapter 2, we study in Chapter 3 the problem of maximizing family-
free adjacencies in pairwise genome comparisons. Two genes that are located next
to each other on a chromosome are said to be adjacent, their adjoining extremities
form an adjacency. The number of conserved adjacencies, i.e., those adjacencies that
are common to two genomes, gives rise to a measure for gene order-based genome
similarity. If the gene content of both genomes is identical, the number of con-
served adjacencies is the dual measure of the well-known breakpoint distance [92]. We
study the problem of computing the number of conserved adjacencies in a family-
free setting, which relies on pairwise similarities between genes. We analyze its
computational complexity and develop exact and heuristic algorithms for its solu-
tion in pairwise comparisons. Subsequent experiments on simulated and biological
datasets demonstrate the practical applicability of our family-free model and our
algorithms.

In Chapter 4, we introduce the problem of constructing a mixed multichromoso-
mal breakpoint median of three genomes in a family-free setting. We then prove its
NP-hardness and develop an exact algorithm for its solution. We further present a
heuristic method that shows improved resistance against perturbances in the gene
order caused by events of gene duplication and loss. We subsequently evaluate our
family-free model and the developed algorithms in experiments on simulated and
biological datasets.

In Chapter 5, we present models and algorithms for the family-free identification
of syntenic blocks. To this end, we make use of a recent definition of syntenic blocks
suggested by Ghiurcuta and Moret [46]. We formulate the problem of identifying
syntenic blocks as a problem of discovering common intervals in indeterminate strings.
We then present several common interval-based models on indeterminate strings
and devise fast polynomial-time algorithms for their corresponding discovery prob-
lems. The chapter closes with experiments on a biological dataset comprising 93
bacterial genomes.

Lastly, we give a short conclusion and present future directions of this work in
Chapter 6.

Several parts of this thesis have been published in advance: The general concepts
and the analysis of the biological dataset of Chapter 3 were published in [38], [26],
and [65]. Further, Chapter 5 appeared in [37] and [26].

3

Chapter 1. Introduction

4

Chapter 2
Background

In this chapter, we review basic biological concepts required for the understanding
of subsequently presented family-free models of genome comparison. To this end,
we discuss the organization of genetic information on DNA sequences located inside
each living cell. We then describe the processes and effects of evolution on DNA
sequences, which make genome comparison a challenging subject of research.

Our studies are based on a simple abstract genome model, which is subsequently
introduced in this chapter. It then follows a discussion of the family-free principle
in which we introduce the gene similarity graph that represents another fundamental
data structure of this work.

2.1 Genetic information

Life on earth is classified into three major domains: bacteria, archaea, and eukaryotes,
whereby viruses reside on the borderline of what is consentaneously considered as
life. A species consists of a population of organisms whose genetic information that
adheres to a common gene pool. The genetic information of an organism is encoded
in its genome, which is physically represented by DNA sequences located inside each
of its cells (with exception to certain differentiated cells of eukaryotic organisms).
Whereas the genome of a prokaryotic cell is enclosed in a nucleus, bacteria, archaea,
and viruses lack cellular compartmentalization. Eukaryotic cells contain additional
genomic sequences in organelles, such as mitochondria.

The genetic information of the cell is organized in a highly complex manner. Fig-
ure 2.1 depicts the four main levels of genetic information, which can be hierarchi-
cally arranged into sequence, gene order, gene family, and epigenetics/spatial structure.
Starting at the lowest level, nucleotide bases are the building blocks of DNA se-
quences, each composed of two anti-parallel strands. These sequences are often
condensed through histones or histone-like proteins into highly compact structures
forming linear or circular chromosomes. The chromosomal DNA accommodates

5

Chapter 2. Background

Figure 2.1: The four main levels of genetic information.

inheritable entities that contribute to a certain function in the cell and evolve un-
der natural selection. In this work, we call a segment that is associated with an
inheritable entity a gene. The succession of genes and their partition into chromoso-
mal sequences comprises a higher level of genetic information known as gene order.
Genes may overlap or are interspersed by segments that are under no selective pres-
sure. Moreover, they are usually not independent of each other. Their order on the
chromosome has a crucial influence on the organism’s cellular processes. Genes are
imperfectly passed on from one generation to the next. Their degree of conservation
over many generations varies largely, depending on their influence on the organ-
ism’s viability and fitness. Two or more genes originating from the same ancestral
sequence are called homologous [60]. A set of homologous genes is called a gene fam-
ily. Gene family information presupposes knowledge of segments corresponding to
inheritable entities. It establishes a higher order of genetic information, which con-
sists of evolutionary relationships between genes. Lastly, spatial structure resulting
from the condensed conformation of the chromosome, as well as epigenetic factors,
such as DNA or histone methylation, contribute to the genetic information of the
organism.

This work studies the interaction of the lower two levels of genetic information,
namely sequence and gene order information, thereby resolving either necessary
basic or implicit gene family information.

6

2.2. Evolutionary modifications

Figure 2.2: Mutational changes in genomes can be classified into global modifications
that act on one ore more genes, and local modifications, called point mutations that
affect on one or few nucleotides.

2.2 Evolutionary modifications

Over an evolutionary period of time, genomic DNA sequences accumulate muta-
tions, that are generally classified into global modifications and point mutations (see Fig-
ure 2.2). The latter comprise mutations that affect one or few consecutive nucleotide
bases in the DNA sequence through substitution, deletion, or insertion. Global mod-
ifications operate on larger genomic regions, thereby affecting one or more genes.
The associated mutational operations can be differentiated in genome rearrangements
such as inversions, transpositions, block interchanges, translocations, chromosome
fusions and fissions, chromosome circularizations and linearizations, and content
modifications such as substitutions, duplications, insertions, and deletions of one or
more genes. The study of global modifications is subject to gene order analysis. In this
work we perform gene order analyses in which we do not explicitly model genome
rearrangements or content modifications, but merely study their impact on the gene
order. That is, we identify syntenic regions, which are regions of conserved gene or-
der in two or more genomes of related species. In doing so, we often assume that
global modifications happen parsimoniously, i.e., every occurred mutation can also be
unanimously observed in the DNA sequence. In other words, we assume that the
smallest number of global mutational changes that transforms one DNA sequence
into another can explain their true evolutionary history. This is not generally true
in applied gene order analyses of real biological sequences. Phenomena such as
breakpoint reuse [11, 98], or parallel and convergent evolution [53, 73, 77, 91] violate the
parsimony principle. Nevertheless, the evolutionary rate of global modifications is

7

Chapter 2. Background

slow, therefore such effects are considerably rare in close and intermediate evolu-
tionary histories [74, 100].

2.3 Evolutionary relationships

Establishing relationships between gene orders of different species presumes knowl-
edge of relationships between their genes. In evolutionary biology [60], a set of
genes is called homologous if and only if they evolved from the same ancestral se-
quence. The specific evolutionary relationships of homologous genes can be de-
scribed by a gene tree. Therein, each gene is represented by a leaf label. Starting
at the common ancestral sequence of all genes in the set, which corresponds to the
root node, genes branch off along the evolutionary path to the leaves. Each internal
node of the gene tree corresponds to an evolutionary event, by which the common
ancestry of two or more genes diverges into separate paths. These events can be
generally classified into speciation, duplication, and horizontal gene transfer. In doing
so, two genes are orthologous if their lowest common ancestor in the gene tree cor-
responds to a speciation event, and paralogous, if it represents a duplication event.
Lastly, genes are xenologous if their common evolutionary path forked through hori-
zontal gene transfer.

Example 1 Figure 2.3 (a) exemplifies duplication, speciation, and horizontal gene transfer
in a gene tree of five genes, A1, A2, B1, B2, and C2, of species A, B, and C. Gene pairs
(A1, A2), (B1, B2), (A1, B2), (A1, C2), (A2, B1), and (B1, C2) are paralogs, whereas
gene pairs (A1, B1) and (A2, B2) are orthologs. Gene pairs (A2, C2) and (B2, C2) are
xenologs. Figure 2.3 (b) visualizes the gene tree embedded in its corresponding species tree.

Knowledge of exact evolutionary relationships between genes is extremely valu-
able in gene order analysis. Such information is generally not given, but is com-
monly predicted. Yet, genome-wide gene tree reconstruction is computationally
expensive. Most commonly, predicted evolutionary relationships are provided in
the shape of a gene family assignment:

Definition 1 (gene family assignment) Let Σ be the universe of genes, a gene family
assignment H ⊆ Σ × Σ is an equivalence relation between genes. The equivalence
class of x ∈ Σ, i.e., the set of genes belonging to the same family as gene x under gene
family assignment H, is denoted as

[x]H ≡ {y ∈ Σ | (x, y) ∈ H} . (2.1)

Recall that an equivalence relation is reflexive, i.e., (x, x) ∈ H for all x in Σ, (2)
symmetric, i.e., for every (x, y) in H there exists also (y, x) in H, and (3) transitive,
i.e., for every {(x, y), (y, z)} ⊆ H there also exists (x, z) ∈ H. In other words, a gene

8

2.3. Evolutionary relationships

Figure 2.3: (a) Gene tree of five genes comprising three species; (b) diagram of the
gene tree (dashed lines) embedded in its species tree (outer continuous lines).

family assignment H is a partition of genes (into non-intersecting subsets). It is ob-
vious that a set of homologous genes always forms a gene family, hence these terms
are often used synonymously. However, it is worthwhile differentiating between
homologies and gene families, as there exist several different notions of the term
gene family in the literature. For instance, molecular evolutionists such as Tomoko
Ohta [79] differentiate between multi-gene families and super families, whereby in
the former, genes are not only homologous, but also have related biological func-
tions. Further, protein coding genes often comprise multiple domains, which can
be shared between multi-gene families.

Other uses of the term gene family are practically motivated: It is common to
call genes that are clustered into groups according to their sequence similarity, co-
orthologs or gene families. These often correspond to subtrees of larger gene fami-
lies. Various databases exist, e.g. COG [107], eggNOG [85], OrthoDB [111] — only
to name a few — that offer information of precomputed gene families of protein
coding genes. Since gene duplication and sub- or neofunctionalization occurs fre-
quently in evolution, the number of homologous genes in a genome that are pooled
into the same gene family grows the higher one ascends in the evolutionary tree.
With increasing number of diverse genomes, these gene families become less useful
for gene order analyses, if only a close subset of taxa is of interest. The blemish
of missing gene trees needed for truly resolving evolutionary relationships between
genes is often covered in databases by offering varying levels of granularity. This
means that for some subsets of species in a database (but generally not for all),
gene families are re-computed with tighter parameters. Moreover, the computed
sequence-based similarity estimates are rarely based on models of sequence evolu-
tion as these involve considerably higher computational costs. Subsequently, dif-

9

Chapter 2. Background

S i c d k m b f h e a g

T c i d k m b f j m a g e

Figure 2.4: Gene m in gene order sequence S has two orthologous counterparts in
sequence T. The pair of positional homologs is connected by an orange line. The
syntenic region around the pair is highlighted in black.

ferential evolutionary rates are disregarded, amplifying the dilemma of predicting
gene families.

Tree-based databases such as TreeFam [67] and OrthologID [31] may provide
more accurate information desired for gene order studies. They also tend to be
more often manually curated than their sequence similarity-based counterparts. In
return, the provided gene family information is often sparse and covers not all genes
of a genome. Moreover, such databases usually comprise only a handful of species.
As a result, they are of limited use in gene order studies.

Several software tools like OrthoMCL [68], InParanoid [80], or MultiMSOAR [101]
are freely available and allow for direct computation of gene family assignments in
a dataset of interest. Typically, these approaches assume that gene families naturally
cluster into densely connected subgraphs in the gene similarity network. However,
this is not always the case: Low-quality sequences obtained by next generation se-
quencing may artificially reduce edge weights, and even prevent edges from appear-
ing in the network at all. Moreover, protein coding genes that comprise multiple
domains can have strong ties not only to their own family but also to other fam-
ilies they share a domain with. Some of these genes may not be at all traceable
back to a single gene family. While some recent approaches can deal with the am-
biguities caused by multi-domain proteins [58, 103], it is still a major challenge to
define cut-offs in the clustering process that at the same time eliminate spurious
granularity [42, 70].

The varying notations and the practical difficulties of gene family prediction com-
pel to differentiate between gene family assignment and homology assignment:

Definition 2 (homology assignment) Let Σ be the universe of genes, a homology as-
signment H ⊆ Σ× Σ is a reflexive and symmetric mapping between genes. The set of
genes belonging to the same gene family as gene x under homology assignment H, is given
by its transitive closure,

[x]+H ≡ {x} ∪
⋃

y∈Σ\{x}
(x,y)∈H

[y]+H . (2.2)

10

2.4. Genome model

On the one side, a homology assignment can be seen as an incomplete gene fam-
ily assignment, because the constraint of transitivity is lifted; on the other side, it
can be used to additionally link certain members of a super family belonging to dif-
ferent gene families, such as positional homologs [28], or main orthologs/exemplars [93].
Recently, detailed evolutionary relationships became less a prerequisite, but a result
of gene order analyses [19, 43, 117]. This development is founded on the concept
of positional homology [28, 34]. In a duplication event, a gene gets copied into a new
location of the genome. That is to say, one of the duplicates retains its position on
the chromosome, whereas the other integrates elsewhere. When comparing the du-
plicates with a third genome containing the gene, the pair of orthologs within the
syntenic region is called a pair of positional homologs [28] (see Figure 2.4). Positional
homologs are more likely to be functionally related than not positionally conserved
pairs of orthologs [28]. They establish one-to-one relations between genes of two
or more genomes that indicate ancestral gene orders. Hence, in the following, we
mainly focus on a restricted homology assignment:

Definition 3 (one-to-one homology/gene family assignment) A one-to-one homol-
ogy assignment H1 is a homology assignment such that for each gene g ∈ Σ, there exists
no other gene g′ in [g]+H1

belonging to the same genome as g. If in addition H1 is transitive,
it is a one-to-one gene family assignment.

A one-to-one homology assignment H1 does not take the conservation of gene
order into account.

2.4 Genome model

In the following, we introduce a genome model that facilitates the study of gene
orders on an abstract level. In doing so, we do not impose any requirements on
the type and resolution of inheritable entities that are considered genes in practical
studies, except that they must be non-overlapping segments with a defined start
and end position on the DNA sequence. Several software tools and methods for
gene prediction are available that identify genomic features suitable for the genome
model described in the following [59, 71, 90, 104].

2.4.1 Genomes, chromosomes, and genes

In this work, a genome G is entirely represented by a tuple G ≡ (C,A), where
C denotes a non-empty set of unique genes, and A is a set of adjacencies, which
represent the immediate gene neighborhoods. In doing so, we assume that genes
are non-overlapping, although this is not generally true for genes of real biologi-
cal sequences. Genes are represented by their extremities, i.e., a gene g ≡ (gt, gh),
g ∈ C, consists of a head gh and a tail gt, where h and t are called terminals. The

11

Chapter 2. Background

ah

at

ct ch eh et

bt bh

dh dt

a
c e

b

d

Figure 2.5: Graph representation of a genome, in which vertices correspond to gene
extremities, thick black directed edges represent genes, and thin gray undirected
edges depict adjacencies. Edge labels of genes indicate the canonical reading
direction of each chromosome.

set of adjacencies A consists of non-intersecting unordered pairs of gene extrem-
ities: {xa, yb} ⊆ ⋃ C, with a, b ∈ {h, t}, (where

⋃ C is a short form of writing⋃
(gt,gh)∈C{gt, gh}). In the following, we will conveniently use the notation C(G) and
A(G) to denote the set of genes and the set of adjacencies of genome G, respectively.
Further, we define the size of a genome as the number of its genes |G| ≡ |C(G)|.

Genomes can be represented by a multigraph, in which
⋃ C represents the set

of vertices and C ∪ A the set of edges. In doing so, edges of set C, which connect
extremities within genes, are directed, pointing to the genes’ heads. Edge set A,
which links extremities between genes, is undirected.

Example 2 G = (C,A) with C = {a, b, c, d, e} and A = {{at, ah}, {ch, eh}, {dt, bh},
{bt, dh}} is a genome. C can be more explicitly written in terms of gene extremities as
C = {(at, ah), (bt, bh), (ct, ch), (dt, dh), (et, eh)}. The graph representation of genome G is
shown in Figure 2.5.

Further, we introduce the notation of subgenomes. A subgenome G′ of genome G
corresponds to a set of non-intersecting subsequences of G:

Definition 4 (subgenome) Genome G′ is a subgenome of genome G, denoted by G′ ⊆ G,
iff C(G′) ⊆ C(G) and for each {xa, yb} in A(G′), with a, b ∈ {h, t}, either {xa, yb}
is contained in A(G) or there exists a sequence of adjacencies {{xa, za1

1 }, {zb1
1 , za2

2 }, . . . ,
{zbn

n , yb}} ⊆ A(G) such that {z1, . . . zn} ∩ C(G′) = ∅, whereby {ai, bi} = {h, t} for each
i = 1, . . . , n.

Chromosomes represent a special class of subgenomes that unambiguously de-
compose a genome G into a set X (G) = {X1, . . . , Xn}, so that the set of genes
of G and the set of adjacencies are the union of non-intersecting subsets C(G) =

C(X1) ∪ · · · ∪ C(Xn) and A(G) = A(X1) ∪ · · · ∪ A(Xn), respectively. A chromosome
X is a genome for which holds either

1.
⋃ C(X) =

⋃A(X) or

12

2.4. Genome model

2.
⋃A(X) ⊂ ⋃ C(X) and |⋃ C(X) \⋃A(X)| = 2,

and there exists no smaller genome X′ ⊂ X satisfying any of the two conditions. In
the former case, X is called circular, whereas in the latter, it is called linear. Chromo-
somes are connected components in the graph representation of the genomes, and
form a path if they are linear, and a simple cycle if they are circular.

Example 2 (continued) G has three chromosomes X1 = ({a}, {{at, ah}}), X2 = ({c, e},
{{ch, eh}}), X3 = ({b, d}, {{bt, dh}, {bt, dh}}), where X2 is linear, and X1, X3 are circu-
lar.

A chromosome can be read in two directions. W.l.o.g. each chromosome is as-
signed a canonical reading direction, resulting in a natural left to right reading order
of its corresponding genes and adjacencies. That is, a gene g facing against the
reading direction is denoted by an overline g. In doing so, a genome can be repre-
sented by a collection of words, in which each character corresponds to a gene. Each
circular chromosome is arbitrarily cut between any two genes and its circularity is
indicated by surrounding brackets. Words that represent the same chromosome up
to reversal fall into the same equivalence class.

Example 2 (continued) Genome G is entirely represented by the words (a), c e, (b d).
Further, word (a) is equivalent to (a), word c e is equivalent to e c, and (b d) is equivalent
to words (d b), (b d), and (d b).

2.4.2 Telomeres

In some genome models the extremities of linear genomes, called telomeres, are
modeled explicitly. We will identify telomeres by symbol ◦ and a subscript number
to differentiate between them. A telomere is modeled as a special gene, meaning
that it is part of the universe of genes Σ, but has only one extremity, which we define
as head ◦h. To this end,

T (X) ≡
{
{◦1, ◦2} if X is linear

∅ otherwise

denotes the set of telomeres of chromosome X. We further define C◦ ≡ C(X)∪T (X)

as the set of genes and telomeres of chromosome X. Similarly, the adjacency set
A◦ of chromosome X contains, next to adjacencies A(X), also adjacencies between
telomeres and the outermost gene extremities:

A◦(X) ≡
{
A(X) ∪ {{◦1, x}, {◦2, y} | {x, y} = ⋃ C(X) \⋃A(X)} if X is linear

A(X) otherwise,

where extremities x and y are arbitrarily assigned to telomeres ◦1 and ◦2. Fi-
nally, we extend these functions to genomes, i.e., T (G) ≡ ⋃

X∈X (G) T (X), C◦(G) ≡⋃
X∈X (G) C◦(X), and A◦(G) ≡ ⋃X∈X (G)A◦(X).

13

Chapter 2. Background

2.5 The Family-free Principle

The family-free principle embodies the idea to perform gene order analysis with-
out the use of gene family or homology assignments. Instead, we are given gene
similarities on the basis of a similarity measure σ : Σ × Σ → R≥0 over the universe
of genes Σ. Gene similarities establish relationships between genes that enable the
execution of gene order studies without the prerequisite of predicted gene fami-
lies. Unlike homology assignments, gene similarities are not a biological concept,
but a general framework that includes many other measures of gene relationships
such as measures of sequence and functional similarity, and similarity between
folding structures of protein coding genes. Independent of the particular similar-
ity measure σ, we consider relations between genes imposed by σ as candidates
for homology assignments. We require similarity measure σ to be symmetric, i.e.,
σ(x, y) = σ(y, x) for any two genes x, y ∈ Σ and that each gene is most similar
to itself, i.e., σ(x, x) = supy∈Σ σ(x, y). Note that gene similarities can represent a
homology assignment H:

σH(x, y) =

{
1 if (x, y) ∈ H
0 otherwise .

(2.3)

In genome models with telomeres, any two telomeres, ◦i, ◦j ∈ Σ have fixed simi-
larity σ(◦i, ◦j) = s◦ (although individual weights may be set in case of contig ends
in unassembled genomes) and have zero similarity to any genes.

In subsequent genome comparisons, we will make use of the following graph
representation, which features similarity relationships between genes of different
genomes and ignores similarities between genes within the same genome:

Definition 5 (gene similarity graph [26, 38]) Given k genomes G1, . . . , Gk and similar-
ity measure σ, the gene similarity graph is a weighted, undirected, k-partite graph B =

(V1, V2, . . . , Vk, E), where each vertex set Vi, 1 ≤ i ≤ k, represents genes of the ith genome,
i.e., Vi = C(Gi), and edge set E = {{g, h} | g ∈ C(Gi), h ∈ C(Gj), 1 ≤ i < j ≤ k :
σ(g, h) > 0} denotes the set of edges between genes belonging to two distinct genomes.
Edges are weighted, with each edge {g, h} ∈ E having edge weight w({g, h}) ≡ σ(g, h).
The gene similarity graph with telomeres B◦ is analogously defined for vertex sets
Vi = C◦(Gi), with 1 ≤ i ≤ k. Telomeres between distinct genomes are always connected in
B◦ with edges of fixed weight s◦.

For convenience, we define E(B) as set of edges of gene similarity graph B =

(V1, . . . , Vk, E), and E(B◦) in case of gene similarity graph with telomeres B◦, respec-
tively. Further, we call a gene singleton if its corresponding vertex in B is not incident
to any edge in E(B).

Example 3 An example of a gene similarity graph with telomeres B◦ for genomes G =

g1 g2 g3, (g4 g5 g6 g7) and H = (h1 h2 h3 h4), h5 h6, (h7) is shown in Figure 2.6.

14

2.5. The Family-free Principle

◦ 1 2 3 ◦ 4 5 6 7

1 2 3 4 ◦ 5 6 ◦ 7

G

H

Figure 2.6: Gene similarity graph B◦ of genomes G and H. Each vertex represents
a gene or a telomere. For simplicity, genes are labeled according to their indices.
Telomeres are simply labeled by ◦, omitting their chromosome affiliations and num-
bering. Black edges correspond to similarities between genes of G and H. Their
thickness indicates their edge weight. Dashed gray edges indicate adjacencies of
genomes G and H, but are not explicitly modeled in the gene similarity graph.

Gene similarity measure σ is not explicitly specified, but similarity values are indicated by
the thickness of the black edges in the graph.

15

Chapter 2. Background

16

Chapter 3
Family-free adjacencies

In this chapter, we propose a gene family-free approach to calculate the number
of conserved adjacencies. The subsequently presented results have in part been
published in [38], [26], and [65]. First, we briefly review the breakpoint distance,
which is the dual measure of the number of conserved adjacencies in gene family-
based analysis when genomes have equal gene content. Thereafter, we introduce
the problem of computing gene family-free adjacencies, followed by an analysis of
its computational complexity. In doing so, we relate the posed problem to previous
works of Bryant [27], Blin et al. [20], and Angibaud et al. [6]. We then proceed to
outline an Integer Linear Program (ILP) that solves our problem exactly. We discuss
preprocessing algorithms that can reduce the candidate space of optimal solutions
in practice. Further, we present a heuristic method that is based on previous work
of Angibaud et al. [6]. Lastly, we evaluate our model and algorithms on simulated
and biological datasets. To this end, we compare our results to those of Angibaud et
al. [6] which were obtained through a comparable gene family-based approach on a
dataset comprising twelve γ-proteobacterial genomes.

3.1 Breakpoint distance

The breakpoint distance is an early and still popular measure of gene order dissimi-
larity, which was initially proposed by Watterson et al. [112]. It is used to calculate
the evolutionary distance between two genomes on the basis of quantifying global
modifications in their gene orders, without explicitly drawing on rearrangement
operations. The breakpoint distance is defined on two genomes with equal gene
content as the number of adjacencies that are not common to both. Recall that in
this work we assume genes to be unique, i.e., they occur once in exactly one genome
that is associated with a specific organism. Therefore we will phrase the breakpoint
distance in terms of a one-to-one homology assignment.

17

Chapter 3. Family-free adjacencies

Definition 6 (breakpoint distance) Given two genomes G and H of equal size |G| =
|H| and a one-to-one homology assignment H1 such that for every gene g in C(G) there
exists exactly one assignment {g, h} ∈ H1 with h ∈ C(H) and vice versa. The projection
of adjacencies of genome G onto genome H is

AH(G) ≡
{
{ha

1, hb
2}
∣∣ {{g1, h1}, {g2, h2}} ⊆ H1 : {ga

1, gb
2} ∈ A(G)

}
,

and AG
◦ (H) defined analogously. The breakpoint distance between G and H is

dBP(G, H) = |H| − |AH(G) ∩A(H)| − |(AH
◦ (G) \ AH(G)) ∩ (A◦(H) \ A(H))|

2
.

Note that the size |H| of genome H is defined as the number of its genes, ex-
cluding telomeres. Further, AH(G) and AH

◦ (G) are symmetric, therefore it holds
that |AH(G)| = |AG(H)| and |AH

◦ (G)| = |AG
◦ (H)| for any two genomes G and

H with equal gene content. We say that two genomes G and H are equivalent, iff
dBP(G, H) = 0 under one-to-one homology assignment H1. Thus, breakpoint dis-
tance as defined above is a metric [20, 112].

3.2 Pairwise family-free adjacencies

In the following, we present a model for identifying shared adjacencies between
two genomes in a gene family-free setting. This model is subsequently extended for
comparisons of two or more genomes in the next section. For now, we focus on two
genomes G and H under a given similarity measure σ. In this study, telomeres in G
and H are modeled explicitly. We then relate between adjacencies of two different
genomes as follows:

Definition 7 (conserved adjacency) Given two genomes G and H and gene similarity
measure σ, two adjacencies, {ga

1, gb
2} ∈ A◦(G) and {ha

1, hb
2} ∈ A◦(H) with a, b ∈ {h, t}

are conserved iff σ(g1, h1) > 0 and σ(g2, h2) > 0.

We subsequently define the adjacency score of any four extremities ga, hb, ic, jd,
where a, b, c, d ∈ {h, t} and g, h, i, j ∈ Σ as the geometric mean of their correspond-
ing gene similarities:

s(ga, hb, ic, jd) ≡
{

1
2

√
σ(g, h) · σ(i, j) if any of g, h, i, j is a telomere,√

σ(g, h) · σ(i, j) otherwise .
(3.1)

Note that the adjacency score itself does not rely on adjacency constraints. Rather,
these constraints are imposed by Definition 7. The convex nature of the geometric
mean of two gene similarity scores rewards conserved adjacencies between highly
similar genes the most, whereas combinations of highly and remotely similar genes,
or two remotely similar genes are decreasingly scored.

18

3.2. Pairwise family-free adjacencies

We now aim to establish a one-to-one homology assignment between genes and
telomeres of genomes G and H, which maximizes the sum of adjacency scores of
conserved adjacencies. In doing so, we circumvent the identification of gene dupli-
cation events by matching those duplicates that either have high similarity to each
other, or are contained in a conserved adjacency with high adjacency score. Our one-
to-one homology assignment takes into account gene similarities (which are treated
as indicator for homology), adjacency scores, and insertions and deletions of one or
few genes. To this end, we compute a matching M ⊆ E in gene similarity graph
B◦ = (U, V, E) of genomes G and H. A matching M in B◦ induces subgenomes
GM ⊆ G and HM ⊆ H, with gene sets C(GM) and C(HM) corresponding to the
set of connected vertices of the matching subgraph BM◦ = (U, V,M). We quantify
gene similarities and scores of conserved adjacencies between matching-induced
subgenomes GM and HM by means of the following measures:

adjGH(M) = ∑
{{g1,h1},{g2,h2}}⊆M,
{ga

1,gb
2}∈A◦(GM),

{ha
1,hb

2}∈A◦(HM)

s(ga
1, gb

2, ha
1, hb

2) (3.2)

edg(M) = ∑
e∈M

w(e) (3.3)

Observe that gene pairs (g1, h1) and (g2, h2) in conserved adjacency measure
adjGH share the same terminals a and b, respectively, where a, b ∈ {h, t}. This
leads to the following optimization problem, in which we aim to find a solution
that maximizes a linear combination of both quantities adjGH and edg:

Problem 1 (FF-Adjacencies) Given two genomes G, H, and some α ∈ [0, 1], find a match-
ingM in gene similarity graph B◦ of G and H such that the following formula is maximized:

Fα(M) = α · adjGH(M) + (1− α) · edg(M). (3.4)

Zhang and Leong [117] study this problem with a similar combination of se-
quence similarity and synteny score. Therein, similarities between genes are re-
stricted to reciprocal best BLAST hits, and each gene is “adjacent” to three genes to
its left and right. Further, problem FF-Adjacencies is related to the works of Tang
and Moret [105] and Angibaud et al. [6], which study the breakpoint distance under
gene family assignments with duplicated genes. Problem FF-Adjacencies can be
easily conformed to gene family constraints by employing gene similarity measure
σH of Equation (2.3) given some gene family assignment H. However, Tang and
Moret [105], and Angibaud et al. [6] impose an additional constraint, requiring that
at least one representative of each gene family in genomes G and H must also be
contained inM-induced subgenomes GM and HM. While such constraint is reason-
able in gene family studies, where gene family assignments act as filter in reducing

19

Chapter 3. Family-free adjacencies

false positive associations between genes, the gene similarity graph can include also
small weakly connected components that most likely lead to false positive homol-
ogy assignments, depending on the particular similarity function. Nevertheless, this
constraint was maintained in our initial gene family-free approach [38]. That is be-
cause it facilitates the reduction of the solution space and allows to identify anchors
in the gene similarity graph, similar to the work of Angibaud et al. [6]. In the work
at hand, we present an original approach, described in Section 3.7, to limit the can-
didate space of optimal solutions when this constraint is not imposed. Note that for
α = 0, problem FF-Adjacencies, independent of the mentioned constraint, coincides
with the maximum weighted bipartite matching problem.

3.3 Family-free adjacencies for more than two genomes

In the previous section we introduced problem FF-Adjacencies for pairwise compar-
isons. In this section, we advance toward a more general model applicable for the
simultaneous study of several genomes. Conserved adjacencies obtained by this ap-
proach can further benefit ancestral genome reconstruction, as it will be explained
in Section 4.5 of the next chapter. Given k ≥ 2 genomes, we aim to find a one-to-one
homology assignment between genes, as previously in the pairwise case. One way
is to find all completely connected subgraphs of size k in the gene similarity graph
and then perform a k-dimensional matching (also known as k-matching). Yet, this
approach neglects many connected components that do not form complete cliques
or only spread over a smaller subset of genomes. Consequently, with increasing
number of genomes in the dataset, the matching size will decrease until only few
fully connected genes remain. Thus, we use a partial k-matching instead, which
allows for missing genes and edges:

Definition 8 (partial k-matching) Given a gene similarity graph B = (G1, . . . , Gk, E), a
partial k-matchingM ⊆ E is a subset of edges such that for each connected component C
in BM ≡ (G1, . . . , Gk,M) no two genes in C belong to the same genome.

We subsequently extend problem FF-Adjacencies to the simultaneous comparison
of several genomes:

Problem 2 (FF-Adjacencies for k > 2 genomes) Given a gene similarity graph B =

(G1, . . . , Gk, E) and some α ∈ [0, 1], find a partial k-matching M that maximizes the
following formula:

Fα(M) = α · ∑
1≤x<y≤k

adjGxGy(M) + (1− α) · edg(M). (3.5)

20

3.4. Computational complexity of pairwise family-free adjacencies

3.4 Computational complexity of pairwise family-free adjacencies

In this section we study the computational complexity of problem FF-Adjacencies in
pairwise comparisons. For α = 0, problem FF-Adjacencies coincides with the max-
imum weighted bipartite matching problem, which can be solved in polynomial
time [63]. Yet, this does not answer the question of the computational complex-
ity of problem FF-Adjacencies for α > 0. In the following, we show first equiv-
alence between instances of the NP-hard exemplar breakpoint distance problem and
certain instances of problem FF-Adjacencies. Then, in Section 3.4.2, we elucidate
further on the relationship between maximum matchings and solutions to problem
FF-Adjacencies. This sets our work in context of previous results of Blin et al. [20]
and Angibaud et al. [6].

Before we can turn to the NP-hardness proof of problem FF-Adjacencies, we need
to show the following lemma that is used in both subsequent subsections:

Lemma 1 Given two genomes G and H, and gene similarity measure σ1 : Σ×Σ→ {0, 1},
every solution to problem FF-Adjacencies for α < 1

3 corresponds a maximal matching in
gene similarity graph B◦ of G and H.

Proof: Assume we are given an optimal solutionM⊆ E to problem FF-Adjacencies
for genomes G and H with α < 1

3 . Further, assume for contradiction there exist two
vertices g and h, for which there is an edge {g, h} ⊆ E, and g, h are not contained
inM-induced subgraph BM◦ ≡ (U, V,M), where U ⊆ C◦(G) and V ⊆ C◦(H).

Since g, h are disconnected in BM◦ , it is obvious that edge setM′ =M∪{{g, h}}
is a valid matching and therefore also a feasible solution to problem FF-Adjacencies.
To prove its optimality, we differentiate between two cases: (i) The M′-induced
subgenomes GM′ and HM′ share the same conserved adjacencies as genomes GM
and HM and (ii) GM′ and HM′ have less conserved adjacencies than GM and HM.

Case (i). If M′-induced subgenomes GM′ or HM′ share the same conserved ad-
jacencies asM, then

Fα(M) < Fα(M′) = Fα(M) + (1− α) · w({g, h}) = Fα(M) + (1− α) ,

which is true because we presume α < 1
3 , thus leading to the first contradiction of

our claim.

Case (ii). We now study the worst case when edge {g, h} disrupts as many
conserved adjacencies as possible between genomes GM and HM, while not con-
tributing to any new. The number of disrupted adjacencies cannot be larger than
two. That is because the integration of gene g into GM′ leads to a change in adja-
cencies A◦(GM′) = A◦(GM) \ {ga

1, gb
2} ∪ {{ga

1, gh}, {gt, gb
2}}, thereby affecting only

adjacency {ga
1, gb

2} of genome GM. The analogous case holds for gene h in HM′ .
We now assume that the two adjacencies of GM and HM, that are removed in
GM′ and HM′ , are associated with two different conserved adjacencies, denoted

21

Chapter 3. Family-free adjacencies

by ψ = {{ga
1, gb

2}, {ha
1, hb

2}} and ω = {{gc
3, gd

4}, {hc
3, hd

4}}. In a worst case scenario,
gi and hi, i = 1, . . . , 4, are genes, thus giving rise to maximal adjacency scores
s(ψ) = s(ω) = 1. But then inequality

Fα(M′) = Fα(M)− α · (s(ψ) + s(ω)) + (1− α) · w({g, h})
= Fα(M)− 2α + (1− α) = Fα(M) + (1− 3α)

> Fα(M) ,

also leads to a contradiction of the claim that genes g, h sharing edge {g, h} ∈ E(B◦)
remain disconnected in an optimal solutionM to problem FF-Adjacencies for α < 1

3 .
�

3.4.1 Reduction from exemplar breakpoint distance problem

The exemplar breakpoint distance relates to the exemplar matching in a bipartite
graph, which is a matching containing exactly one edge (the “exemplar”) per con-
nected component. The problem that one aims to solve in computing the exemplar
breakpoint distance can be stated as follows: Given two genomes G and H and gene
family assignment H, compute the minimum breakpoint distance dBP(G′, H′) over
all subgenomes G′ ⊆ G and H′ ⊆ H such that C(G′) and C(H′) contain exactly one
representative of each gene family with members in both C(G) and C(H). The ex-
emplar breakpoint distance is NP-hard even for simple instances, where each gene
family occurs exactly once in one genome, and in the other genome at most twice:

Problem 3 ((1,2)-EBD [27]) Given two genomes G and H and gene family assignment
H such that for each gene or telomere g ∈ C◦(G) holds that |[g]H ∩ C◦(G)| = 1 and
|[g]H ∩ C◦(H)| ∈ {1, 2}, find a subgenome H′ ⊆ H with |H′| = |G| such that the distance
dBP(G, H′) is minimal.

Problem 3 is NP-hard [27]. We proceed proving the following theorem:

Theorem 1 Problem FF-Adjacencies is NP-hard for 0 < α < 1
3 .

Proof: First, we reduce problem (1, 2)-EBD to instances of problem FF-Adjacencies
(⇐) and then show that a solution to (1, 2)-EBD also leads to a solution to problem
FF-Adjacencies (⇒).

(⇐) Given genomes G, H, gene similarity measure σ1 : Σ × Σ → {0, 1}, and
α ∈]0, 1

3 [. Further, let any gene or telomere g ∈ C◦(G) be connected to at most
two genes h1 and h2 such that σ(g, h1) = σ(g, h2) = 1 and there exists no gene
g′ 6= g for which σ(g′, h1) = 1 or σ(g′, h2) = 1. Clearly, such an instance of prob-
lem FF-Adjacencies corresponds to valid input of problem (1, 2)-EBD. Now, since
α < 1

3 , a solutionM to problem FF-Adjacencies for genomes G and H corresponds

22

3.4. Computational complexity of pairwise family-free adjacencies

to a maximal matching according to Lemma 1. In this particular case, every max-
imal matching is also maximum because exactly one edge incident to each gene
g ∈ C◦(G) must be part of M according to Lemma 1. Since gene similarity mea-
sure σ1 gives equal weight to edges and thus equal (non-zero) score to conserved
adjacencies, solution M to problem FF-Adjacencies maximizes the number of con-
served adjacencies among all possible maximum matchings in gene similarity graph
B◦ of genomes G and H. A solutionM, which maximizes the number of conserved
adjacencies between genomes G = GM and HM ⊆ H, minimizes the breakpoint
distance dBP(G, HM) between genomes G and HM. We conclude that a solution to
problem FF-Adjacencies for the described genomes G and H and α ∈]0, 1

3 [is a valid
solution to problem (1, 2)-EBD.

(⇒) Let genomes G and H and gene family assignment H be a valid input of
problem (1, 2)-EBD. Then G and H are also a valid input for problem FF-Adjacencies
with gene similarity measure σH, and a solution M to problem FF-Adjacencies for
genomes G and H and some α ∈]0, 1

3 [is also a solution to problem (1, 2)-EBD for
G and H.

�

We further believe strongly that the following conjecture holds true:

Conjecture 1 Problem FF-Adjacencies is NP-hard for any α > 0.1

3.4.2 Maximum matchings in solutions to problem FF-Adjacencies

According to Lemma 1, whenever a gene similarity measure puts equal weight on
all edges, the solution to problem FF-Adjacencies for α < 1

3 is a maximal matching.
Furthermore, we previously mentioned that for α = 0, problem FF-Adjacencies
coincides with the maximum matching problem (and is equivalent to the maximum
weighted matching problem under arbitrary σ). It is therefore obvious to ask at
which point, as α is increased from 0 to 1

3 , a solution of problem FF-Adjacencies is
no longer maximum, when gene similarity measure σ1 : Σ×Σ→ {0, 1} is employed.
The answer to this question relates problem FF-Adjacencies to previous works of
Blin et al. [20] and Angibaud et al. [6], who studied the problem of computing the
breakpoint distance under the maximum matching model.

Assume we are given a maximum matchingMMM in gene similarity graph B◦ of
two genomes G and H and gene similarity measure σ1 such thatMMM is a solution
for problem FF-Adjacencies for small enough α > 0. Further, let n > 0 be the num-
ber of edges in MMM. If we increase α, at which point does a maximal matching
MA with n − 1 edges give a higher score under objective function Fα than maxi-
mum matchingMMM, because the former includes more conserved adjacencies? In
an extremal scenario,MMM has no conserved adjacencies at all, and its score under
the objective function Fα is (1− α)n. On the other side, the maximal matching can

1The conjecture was proven by Kowada et al. [62]

23

Chapter 3. Family-free adjacencies

G

H

(a)

G

H

(b)

G

H

(c)

Figure 3.1: (a) Extremal scenario between (b) a maximum matching containing no
conserved adjacencies and (c) a maximal matching containing as many conserved
adjacencies (indicated by gray arcs) as possible.

include as many conserved adjacencies as possible, i.e., n conserved adjacencies as-
suming that genomes G and H contain only circular chromosomes. These two cases
are schematically shown in Figure 3.1 (a-c). However, for circular chromosomes the
score ofMA under objective function Fα is α(n− 1) + (1− α)(n− 1) = (n− 1). We
solve the following equation for α:

(n− 1) < (1− α)n

⇐⇒ n− 1 < n− αn

⇐⇒ α <
1
n

.

We conclude that every solution to problem FF-Adjacencies for any genomes G
and H under gene similarity measure σ1 is a maximum matching if α < 1

n where
n = min(|C◦(G)|, |C◦(H)|) and 1

n � 1
3 in practical applications. Further, when

gene family constraints are imposed and 0 < α < 1
n , problem FF-Adjacencies is

equivalent to computing the breakpoint distance under the maximum matching
model as described by Blin et al. [20] and Angibaud et al. [6].

3.5 Bounds

In the following we establish upper and lower bounds on the score Fα(M) of a solu-
tionM to problem FF-Adjacencies in any gene similarity graph B◦ of two genomes
G and H. A lower bound is simply constructed through any maximum weight
matchingMMWM in B◦, which gives rise to lower bound Fα(MMWM) for any match-
ingM that is a solution to problem FF-Adjacencies in B◦.

24

3.6. An exact solution to problem FF-Adjacencies

We now study the upper bound of objective function Fα which is a convex com-
bination of the two measures edg and adj. Observe that the number of conserved
adjacencies of any matching M in B◦ is at most its size n = |M|. This case occurs
if the gene order between G and H is perfectly conserved and both contain only
circular chromosomes. In order to establish an upper bound of adjacency measure
adjGH(M) for any solution M, we assume that all n edges ei ∈ M, 1 ≤ i ≤ n,
are contained in two conserved adjacencies, respectively. W.l.o.g. genomes G and
H comprise each a single circular chromosome. We follow the natural ordering of
these edges, such that every pair of consecutive edges is contained in a conserved
adjacency. Then the upper bound of adjacency measure adjGH(M) is given by

adjGH(M) ≤
d 1

2 ne
∑
i=1

√
w(e2i−1) · w(e2i) +

b 1
2 nc
∑
i=1

√
w(e2i) · w(e2i+1) , (3.6)

where we define the (n + 1)st edge to be equivalent to the first, i.e., en+1 ≡ e1, which
allows us to sum over the weights of all possible conserved adjacencies in a matching
M. Applying the Arithmetic Mean-Geometric Mean Inequality we obtain

n

∑
i=1

w(ei) ≥
d 1

2 ne
∑
i=1

√
w(e2i−1) · w(e2i) +

b 1
2 nc
∑
i=1

√
w(e2i) · w(e2i+1) (3.7)

⇔ edg(M) ≥ adjGH(M) , (3.8)

which holds true for any matching M in any gene similarity graph B◦. Further,
because the objective function Fα is a convex combination of edg and adj, it holds
that Fα(M) ≤ edg(M) for any M, independent of α. This leads to the following
lemma:

Lemma 2 Given two genomes G and H and gene similarity measure σ, any solution
MMWM to the maximum weighted matching problem in gene similarity graph B◦ of G
and H, is a 1

1−α approximation of problem FF-Adjacencies for α < 1. Furthermore, for any
matchingM that is a solution to problem FF-Adjacencies,

(1− α) · edg(MMWM) ≤ Fα(M) ≤ edg(M) ≤ edg(MMWM) .

3.6 An exact solution to problem FF-Adjacencies

In the following, we describe program FFAdj-2G that solves problem FF-Adjacencies
exactly in pairwise comparisons. The presented results are based on previous work
of Angibaud et al. [6]. The idea is to translate the problem FF-Adjacencies into a
0-1 linear program. That means we define a set of constraints, which are solely
linear inequalities, whose variables are binary (i.e., they take on values 0 or 1) and
an objective function (maximization or minimization of a linear formula). 0-1 linear

25

Chapter 3. Family-free adjacencies

Algorithm 1 Program FFAdj-2G is an ILP for finding a solution to problem FF-
Adjacencies (Problem 1) for two genomes G and H.

Objective:

Maximize

α · ∑
{ga

1,gb
2}∈A?(G),

{ha
1,hb

2}∈A?(H)

s(ga
1, gb

2, ha
1, hb

2) · c(ga
1, gb

2, ha
1, hb

2) + (1− α) · ∑
g∈C◦(G),
h∈C◦(H)

σ(g, h) · a(g, h)

Constraints:

(C.01) for all g ∈ C◦(G), ∑
h∈C◦(H)

a(g, h) = b(g)

for all h ∈ C◦(H), ∑
g∈C◦(G)

a(g, h) = b(h)

(C.02) for all {ga
1, gb

2} ∈ A?(G) and for all {ha
1, hb

2} ∈ A?(H) with a, b ∈ {h, t}
a(ga

1, hb
1) + a(ga

2, hb
2)− 2 · c(ga

1, gb
2, ha

1, hb
2) ≥ 0,

if {ga
1, gb

2} 6∈ A◦(G), then for all g in {g3, . . . , gn} ⊆ C(G)

such that {{ga
1, ga3

3 }, {gb3
3 , ga4

4 }, . . . , {gbn
n , gb

2}} ⊆ A◦(G),

b(g) + c(ga
1, gb

2, ha
1, hb

2) ≤ 1,

if {ha
1, hb

2} 6∈ A◦(H), then for all h ∈ {h3, . . . , hn} ⊆ C(H)

such that {{ha
1, ha3

3 }, {hb3
3 , ha4

4 }, . . . , {hbn
n , hb

2}} ⊆ A◦(H),

b(h) + c(ga
1, gb

2, ha
1, hb

2) ≤ 1

Domains:

(D.01) for all g ∈ C◦(G) and for all h ∈ C◦(H), a(g, h) ∈ {0, 1}
(D.02) for all g ∈ C◦(G), b(g) ∈ {0, 1},

for all h ∈ C◦(H), b(h) ∈ {0, 1}
(D.03) for all {ga

1, gb
2} ∈ A?(G) and for all {ha

1, hb
2} ∈ A?(H) with a, b ∈ {h, t}

c(ga
1, gb

2, ha
1, hb

2) ∈ {0, 1}

programs are a special form of Integer Linear Programs (ILPs). We subsequently use
a solver to assign a value for each variable such that the constraints are verified and
the objective is optimized.

Program FFAdj-2G requires as input two genomes G and H, a number α ∈ [0, 1],
and a gene similarity measure σ. The objective, the variables, and the constraints
are defined in Algorithm 1. Therein, we explore the set of conserved adjacencies of

26

3.6. An exact solution to problem FF-Adjacencies

all possible subgenomes of G and H, by means of the sets of candidate adjacencies of
G and H.

Definition 9 (candidate adjacencies set) For a given genome G,

A?(G) ≡
⋃

G′⊆G

A◦(G′)

denotes the set of candidate adjacencies over all subgenomes G′ ⊆ G.

We will now discuss program FFAdj-2G, as presented in Algorithm 1, in detail,
thereby making use of gene similarity graph B◦ of genomes G and H, which is
implicitly used in our program in order to obtain a matching M between genes of
genomes G and H.
FFAdj-2G contains three types of 0-1 variables, which are listed in domain spec-

ifications (D.01), (D.02), and (D.03) in Algorithm 1. Variables a(g, h) indicate
if edge {g, h} in gene similarity graph B◦ is part of the anticipated matching M.
That is, iff variable a(g, h) is assigned value 1, then {g, h} ∈ M. Similarly b(g),
g ∈ C◦(G), and b(h), h ∈ C◦(H), encode if the corresponding vertices of genes or
telomeres g and h in gene similarity graph B◦ are incident to an edge inM. Lastly,
variables c(ga

1, gb
2, ha

1, hb
2) indicate if gene extremities ga

1, gb
2 of subgenome GM and

ha
1, hb

2 of subgenome HM, with a, b ∈ {h, t}, induced by matching M can possibly
form conserved adjacencies, i.e., {ga

1, gb
2} ∈ A◦(GM) and {ha

1, hb
2} ∈ A◦(HM).

Program FFAdj-2G contains two types of constraints, where constraint (C.01)
represents matching constraints, and constraint (C.02) defines the rules of forming
valid conserved adjacencies. For the former, it is straightforward to see that if the
sum of edges that are part of the matching and that are incident to a single ver-
tex equals one, then the resulting outcome will be a valid matching M. To this
end, we set the sum of variables a(g, h) for a given gene g of genome G over all
genes h of genome H to be equal to b(g), and do so analogously for each gene
h and its corresponding variable b(h). Since a and b are 0-1 variables, constraint
(C.01) fulfills two purposes: Next to ensuring a valid matching, it acts as switch
for variables b, that indicate if a gene g is incident to an edge in solutionM. These
variables are used in the second constraint, (C.02), to ensure that there are no
genes g ∈ C(GM) and h ∈ C(GM) that are located within a conserved adjacency
pair ({ga

1, gb
2}, {ha

1, hb
2}). In the trivial case, no gene is located within adjacency

{ga
1, gb

2} in genome G in the first place, i.e., {ga
1, gb

2} ∈ A◦(G), and nothing needs
to be done. Yet, whenever, subgenome GM contains an adjacency {ga

1, gb
2}, where

genes g1 and g2 are further apart in G, i.e., there exists a sequence of adjacencies
{{ga

1, ga3
3 }, {gb3

3 , ga4
3 }, . . . , {gbn

n , gb
2}} ⊆ A◦(G), where {ai, bi} = {h, t} with 3 ≤ i ≤ n,

containing genes {g3, . . . , gn} ∈ C(G), then each of these genes g3, . . . , gn must not
be contained in M-induced subgenome GM. Constraint (C.02) ensures this by
(i) either allowing conserved adjacency pair ({ga

1, gb
2}, {ha

1, hb
2}), or (ii) any genes of

27

Chapter 3. Family-free adjacencies

{g3, . . . gn} to be part of GM, or (iii) neither of them to be true. This is achieved
by constraint b(g) + c(ga

1, gb
2, ha

1, hb
2) ≤ 1 for each gene g ∈ {g3, . . . , gn}, and analo-

gously for adjacency {ha
1, hb

2} of subgenome HM.

3.7 Speeding up computations

We now aim to reduce the number of variables and constraints in program
FFAdj-2G that are irrelevant for obtaining an exact solution to problem
FF-Adjacencies for two given genomes G and H, gene similarity measure σ, and
a fixed α ∈ [0, 1]. For instance, it is obvious that for any pair of genes or telomeres
(g, h), g ∈ C◦(G) and h ∈ C◦(H), for which σ(g, h) = 0, variable a(g, h) and any
related constraint can be safely discarded, since the value of a(g, h) has no effect on
the solution.

We call a pair of candidate adjacencies ({ga
1, gb

2}, {ha
1, hb

2}), where {ga
1, gb

2} ∈ A?
◦(G),

{ha
1, hb

2} ∈ A?
◦(H), a conserved candidate adjacency, if σ(g1, h1) > 0 and σ(g2, h2) > 0.

Whenever s(ga
1, gb

2, ha
1, hb

2) = 0 for any conserved candidate adjacency c = ({ga
1, gb

2},
{ha

1, hb
2}), then variable c(ha

1, hb
2, ga

1, gb
2) and its related constraints can be omitted in

the ILP.

With only these trivial omissions, the number of suboptimal solutions that pro-
gram FFAdj-2G must evaluate remains still high. Hence the resulting ILP is exces-
sively large and contains many combinations that must be evaluated by the solver,
making the program too slow for practical applications.

The combinatorial complexity in solving problem FF-Adjacencies is dominated by
the number of conserved candidate adjacencies in a matching. For example, prob-
lem FF-Adjacencies allows solutions in which the first and last genes of two linear
chromosomes can participate in a conserved adjacency, whereas all their other genes
are not contained in the matching. In most cases, such a scenario is suboptimal, yet
this — as well as many other scenarios leading to suboptimal solutions — must be
considered by program FFAdj-2G. In the remainder of this section, we present a
naïve preprocessing algorithm to reduce the number of candidate conserved adja-
cencies that must be considered in identifying a solution to problem FF-Adjacencies.
To this end, we give two solutions to the following loosely-stated problem:

Problem 4 For any conserved candidate adjacency c = ({ga
1, gb

2}, {ha
1, hb

2}), determine (i)
whether every solution to problem FF-Adjacencies must contain c (ii) or every matching
M in which c is a conserved adjacency pair between GM and HM, leads to a suboptimal
solution to problem FF-Adjacencies.

28

3.7. Speeding up computations

e1 e2

g1 g2

h1 h2

(a)

g1 g2

h1 h2

(b)

e?g1

e?h1

e?g2

e?h2

g1 g2

h1 h2

(c)

e?g1

e?h1

e?g2

e?h2

g1 g2

h1 h2

(d)

e1 e2

e?g1

e?h1

e?g2

e?h2

g1 g2

h1 h2

(e)

Figure 3.2: Parts (a)–(e) show all possible conserved candidate adjacencies, in which
genes g1, g2, h1 and h2 can be involved. Black edges identify edges that are in
the gene similarity graph B◦, pairs of arcs of same color correspond to conserved
candidate adjacencies of their incident genes. Dashed black edges denote edges
that are assumed to be present in B◦, but remain unobserved in the described
analytic framework.

3.7.1 Identifying anchors in the gene similarity graph

In this section, we will address the part (i) of Problem 4. That is, we aim to identify
pairs of candidate adjacencies of two genomes G and H and gene similarity measure
σ, which must be part of an optimal solution to problem FF-Adjacencies.

The number of conserved candidate adjacencies that must be considered in find-
ing an optimal solution M to problem FF-Adjacencies for genomes G and H can
be greatly reduced if one knows that certain edges must be part of M. Then any
conserved candidate adjacency that crosses these edges can no longer be realized
in optimal solution M and henceforth can be safely discarded prior to executing
program FFAdj-2G. We call edges anchors, when they are proven to be contained in
every optimal solution before any solution to problem FF-Adjacencies is calculated.

29

Chapter 3. Family-free adjacencies

To identify anchors, we look at very simple local structures in the gene similar-
ity graph B◦ of genomes G and H and calculate the net gain of including these
structures into a matching. Let us consider a conserved candidate adjacency pair
c = ({ga

1, gb
2}, {ha

1, hb
2}), where {ga

1, gb
2} ∈ A◦(G), {ha

1, hb
2} ∈ A◦(H). That is, genes

g1, g2 and h1, h2 are immediate adjacencies in genomes G and H, as visualized in
the graph of Figure 3.2 (a), where edges {g1, h1}, {g2, h2} are black, and the colored
arcs indicate the conserved candidate adjacency between the two pairs of extremities
(not explicitly shown) of the four genes. We denote by e1 = {g1, h1}, e2 = {g2, h2}
the edges between genes g1, h1 and g2, h2 in gene similarity graph B◦ of G and H
and by w1 = σ(g1, h1), w2 = σ(g2, h2) their edge weights, respectively. Similarly,

w?
g1
= max

h∈C(H)
h 6=h1

σ(g1, h)

is the highest weight of any edge e?g1
6= e1 incident to vertex g1 in B◦. Edges e?g2

, e?h1
,

and e?h2
and their corresponding weights w?

g2
, w?

h1
, w?

h2
are defined analogously. Since

our goal is to find anchors, let e1 and e2 be the highest weighted edges incident to
vertices g1, g2, h1, and h2.

We assume for contradiction that we are given a solution M to problem
FF-Adjacencies of genomes G and H that does not contain conserved candidate
adjacency c. What is the minimal gain of including c into a matching M′ ⊆
M∪ {{g1, h1}, {g2, h2}}? If the answer to this question is strictly positive, then c
is an anchor and we discard all conserved candidate adjacencies that are in conflict
with c.

There are four structurally different worst case scenarios that must be considered
to answer this question analytically. We derive a general formula for computing
the minimal gain of constructing matching M′ from any matching M such that
M′ contains conserved candidate adjacency c. To allow for a computationally fast
detection of anchors, we want our formula to depend only on edges incident to
genes g1, g2, h1, and h2. Thus, each edge beyond these four edges is considered to
have highest similarity

w? = max
g∈C(G)
h∈C(H)

σ(g, h) ,

corresponding to the worst case of losing edges or adjacencies due to the inclusion
of conserved candidate adjacency c. In the first scenario, no edge incident to g1, g2,
h1, and h2 is contained inM, as shown in Figure 3.2 (b). Instead, the four genes are
spanned by a conserved adjacency. We can calculate for a given α if the net gain of

30

3.7. Speeding up computations

including conserved adjacency c is higher than losing a “perfect conserved adjacency”
with adjacency score w?:

α
√
(w?)2 < α

√
w1w2 + (1− α)(w1 + w2) (3.9)

⇐⇒ α <
w1 + w2

w1 + w2 + w? −√w1w2
(3.10)

Note that the denominators of Inequality (3.10) and of successive inequalities are
strictly positive under the proposed assumptions of edge weights (and therefore,
these inequalities hold true).

In the second worst case scenario, vertices g1, g2, h1, and h2 are incident to edges
e?g1

, e?g2
, e?h1

, and e?h2
, respectively. All four edges can be involved in remote conserved

adjacencies, as shown by Figure 3.2 (c). Since we do not inspect edges that are
not incident to vertices g1, g2, h1, and h2, we assume that these remote conserved
adjacencies are formed with edges of highest weight w?. Note that in contrast to
conserved adjacency c, they must not necessarily be part of A◦(G) and A◦(H) but
can be part of any set of conserved adjacencies between any pair of subgenomes
G′ ⊆ G and H′ ⊆ H that is associated with a solution to problem FF-Adjacencies.
As such, remote conserved adjacencies are almost impossible to predict, justifying
our narrow approach of focusing only on edges incident to g1, g2, h1, and h2. The
worst case corresponding to the described scenario is captured by inequalities

α
(√

w?
g1

w? +
√

w?
g2

w? +
√

w?
h1

w? +
√

w?
h2

w?
)
+ (1− α)(w?

g1
+ w?

g2
+ w?

h1
+ w?

h2
) < α

√
w1w2 + (1− α)(w1 + w2)

(3.11)

⇐⇒ α <
w1 + w2 − w?

g1
− w?

g2
− w?

h1
− w?

h2

w1 + w2 −
√

w1w2 +
√

w?
g1

w? +
√

w?
g2

w? +
√

w?
h1

w? +
√

w?
h2

w? − w?
g1
− w?

g2
− w?

h1
− w?

h2

. (3.12)

Similarly, edge e?g1
could form a conserved adjacency with e?g2

, which could result
in an overall matching score superior to that of a matching which includes con-
served adjacency c, if e?g1

and e?g2
participate in two further adjacencies. This, of

course, holds analogously for edges e?h1
and e?h2

, and both scenarios can simultane-
ously occur in a valid matching. Our considerations are summarized in inequalities

α
(√

w?
g1

w?
g2
+
√

w?
g1

w? +
√

w?
g2

w? +
√

w?
h1

w?
h2
+
√

w?
h1

w? +
√

w?
h2

w?
)

+ (1− α)(w?
g1
+ w?

g2
+ w?

h1
+ w?

h2
) < α

√
w1w2 + (1− α)(w1 + w2) (3.13)

⇐⇒ α <
w1 + w2 − w?

g1
− w?

g2
− w?

h1
− w?

h2

w1 + w2 − w?
g1
− w?

g2 − w?
h1
− w?

h2
−√w1w2 +

√
w?

g1
w?

g2 +
√

w?
g1

w? +
√

w?
g2 w? +

√
w?

h1
w?

h2
+
√

w?
h1

w? +
√

w?
h2

w?
. (3.14)

Figure 3.2 (d) visualizes both described scenarios. At last, either edges e1 or e2

can participate in other conserved adjacencies. For instance, edge e1 can form a
conserved adjacency with e?g2

, e?h2
, or another edge beyond vertices g2 and h2 of

weight w?. If e1 forms a conserved adjacency with any of the former two, the overall

31

Chapter 3. Family-free adjacencies

matching score can be higher than choosing conserved adjacency c, if e?g2
or e?h2

are involved in a further conserved adjacency of high weight. Note that conserved
adjacency c and edges e?g2

, e?h2
cannot both be part of the same matching.

max


α
(√

w1w?
g2
+
√

w?
g2

w?
)
+ (1− α)w?

g2
,

α
(√

w1w?
h2
+
√

w?
h2

w?
)
+ (1− α)w?

h2
,

α
√

w1w?

 < α
√

w1w2 + (1− α)w2 (3.15)

⇐⇒ α < min


w2−w?

g2
w2−w?

g2
+
√

w1w?
g2
+
√

w?
g2

w?−√w1w2
,

w2−w?
h2

w2−w?
h2
+
√

w1w?
h2
+
√

w?
h2

w?−√w1w2
,

w2
w2+
√

w1w?−√w1w2

 . (3.16)

These equations hold for edge e2 analogously, although only one of the edge pairs
(e1, e?g2

), (e1, e?h2
), (e2, e?g1

) and (e2, e?h1
) can be part of a valid matching. Figure 3.2 (e)

visualizes the possibilities described by Inequalities (3.15) and (3.16) for both edges
e1 and e2. We give a general simplified formula to compute the gain of including
conserved adjacency c over all other possibilities as described by Inequalities (3.9),
(3.11), (3.13), and (3.15), where w = w?

g1
= w?

g2
= w?

h1
= w?

h2
:

α
√

w1w2 + (1− α)(w1 + w2) > max



αw? ,

4α
√

ww? + (1− α)4w ,

2α
(

w + 2
√

ww?
)
+ (1− α)4w ,

α
√

w1w + (1− α)(w1 + w) ,

α
√

w2w + (1− α)(w2 + w) ,

α
√

w1w? + (1− α)w1 ,

α
√

w2w? + (1− α)w2

(3.17)

The inequality above allows us to visualize the gain of establishing adjacency c on
an analytic level, as pictured in Figure 3.3 (a) for three different parameter choices.
Obviously, in practical applications the exact edge weights and the previously de-
scribed inequalities are used. Similarly, Inequalities (3.10), (3.12), (3.14) and (3.16)
can be integrated into the following:

32

3.7. Speeding up computations

α < min



w1+w2
w1+w2+w?−√w1w2

,
w1+w2−4w

4(
√

ww?−w)+w1+w2−
√

w1w2
,

w1+w2−4w
w1+w2+2w?−√w1w2

,
w2−w

w2−w+
√

w1w+
√

ww?−√w1w2
,

w1−w
w1−w+

√
w2w+

√
ww?−√w1w2

,
w2

w2+
√

w1w?−√w1w2
w1

w1+
√

w1w?−√w1w2

(3.18)

Figure 3.3 (b) visualizes the above inequality for three parameter choices. Observe
that the inequality fails if w ≥ 1

2 w?. Inequality (3.11) and (3.12) are the limiting
factors in the gain of choosing conserved adjacency c and, thus, are the driving
functions in the plots of Figure 3.3.

Figures 3.3 (a) exhibits reasonably large areas of positive minimal gain in all
three parameter choices. This raises the hope that identifying anchors is an effi-
cient method to reduce the solution space of problem FF-Adjacencies in practice.
The plot shows that the minimal gain decreases with increasing α — what seems
surprising at first sight, but is a result of the increasingly higher scored conserved
adjacencies in alternative matchings that conflict with conserved adjacency c. The
minimal gain is generally limited by w < 1

2 w1 = 1
2 w2. That is, if edges e1 and e2

are adjacent (in the graph theoretic meaning of the word) to edges with half their
weight or higher, the minimal conserved adjacency c is negative and c cannot be an
anchor.

Figure 3.3 (b) indicates that few or no anchors could be found for α > 0.7. Note
that the analytic evaluation of anchors includes all possible worst case scenarios
of alternative matchings that could give a higher score than conserved adjacency c.
However, some of these scenarios can be ruled out when identifying anchors in
practice. For example, if edges e1 and e2 are not adjacent to any other edges, then
only the scenario described by Inequality (3.9) needs to be considered.

3.7.2 Remaining subgraph test

In the following, we give a solution to part (ii) of Problem 4, that is, we identify con-
served candidate adjacencies that cannot be part of an optimal solution to problem
FF-Adjacencies.

In solving problem FF-Adjacencies, a conserved adjacency that is established be-
tween two pairs of distantly located genes in two genomes removes many edges
from the gene similarity graph that can no longer be part of a matching. We now
proceed to define a test that evaluates if the remaining subgraph, i.e., the gene sim-
ilarity graph without edges removed by establishing a given conserved adjacency,

33

Chapter 3. Family-free adjacencies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

w

m
in
im

a
l
g
a
in

in
ch

o
o
si
n
g

c

w1 = w2 = w∗, α = 1
20

w1 = w2 = w∗, α = 1
2

w1 = w2 = w∗, α = 3
4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

w

α

w1 = w2 = w ∗

w1 = w2 = 3
4w ∗

w1 = w2 = 1
2w ∗

(b)

Figure 3.3: Part (a) shows the gain of establishing conserved adjacency c against all
other possibilities as described by Inequality (3.17), for w1 = w2 = w? and three
different values of α, as a function of w. The areas, corresponding to parameter
choices for which Inequality (3.17) holds true, are highlighted in red colors and
bounded by a red horizontal line. Similarly, Part (b) visualizes Inequality (3.18) for
three different values of w1 and w2.

can (still) lead to an optimal solution of problem FF-Adjacencies. If the test fails, the
reverse conclusion leads to the omission of the tested conserved adjacency from the
set of conserved candidate adjacencies.

More formally, given a gene similarity graph B◦ of two genomes G and H, let c =
{{ga

1, gb
2}, {ha

1, hb
2}} be the tested conserved candidate adjacency, where {ga

1, gb
2} ∈

A?(G) and {ha
1, hb

2} ∈ A?(H) and a, b ∈ {h, t}. In any matching in which c =

{{ga
1, gb

2}, {ha
1, hb

2}} is a conserved adjacency pair, the (possibly empty) set of genes
{g3, . . . , gn} such that {{ga

1, ga3
3 }, {gb3

3 , ga4
4 }, . . . , {gbn

n , gb
2}} ⊆ A◦(G), where {ai, bi} =

{h, t} with 3 ≤ i ≤ n, and the (possibly empty) set of genes {h3, . . . , hm} such that
{{ha

1, hc3
3 }, {hd3

3 , hc4
4 }, . . . , {hdm

m , hb
2}} ⊆ A◦(H), where {cj, dj} = {h, t}with 3 ≤ j ≤ m,

can no longer be part of a solution to problem FF-Adjacencies for genomes G and H.
If any of the two gene sets are non-empty, they induce a partition in gene similarity
graph B◦ of G and H, into the set of deleted edges ED = {{g′, h′} | {g′, h′} ∈ E(B◦) :
g′ ∈ {g3, . . . , gn} or h′ ∈ {h3, . . . , hm}} and the remaining edges ER = E(B◦) \ ED.

We now apply upper and lower bounds of objective function Fα of problem
FF-Adjacencies that were established in Section 3.5 on the remaining subgraph ER.
This leads to the formulation of the remaining subgraph test captured by the following
lemma:

Lemma 3 LetMMWM ⊆ E(B◦) andMR
MWM ⊆ ER be maximum weighted matchings in

bipartite graphs B◦ and (U, V, ER) ⊂ B◦, respectively, where U ⊂ C◦(G) and V ⊂ C◦(H).
Further, let Mheur ⊆ E(B◦) be a heuristic solution, which is any matching in B◦ such

34

3.8. A heuristic solution to problem FF-Adjacencies

that Fα(Mheur) ≥ Fα(MMWM). Then conserved candidate adjacency pair c = {{ga
1, gb

2},
{ha

1, hb
2}} can be discarded if

Fα(Mheur) > edg(MR
MWM) (3.19)

without losing optimality in solving problem FF-Adjacencies for gene similarity graph B◦.

Proof: Recall that according to Lemma 2, the score Fα(M) of any solution M ⊆
E to problem FF-Adjacencies cannot exceed edg(MMWM), i.e., the sum of edge
weights of a maximum weighted matching solutionMMWM ⊆ E. Now, assume for
contradiction that there exists an optimal solution M′ to problem FF-Adjacencies
for G and H, where conserved candidate adjacency pair c is established between
GM′ and HM′ . Since any edge in ED cannot be part ofM′, it holds that

Fα(M′) ≤ edg(MR
MWM) < Fα(Mheur) ,

contradicting the premise of Equation (3.19).
�

Computing a maximum weight matching solution in gene similarity graph B◦ of
genomes G and H is achievable within O(|E(B◦)|

√
|G|+ |H|) time [39], however

an implementation of Duan and Su’s algorithm was not publicly available at the
time of writing. The number of possible conserved candidate adjacencies of B◦ is in
order O(2|E(B◦)|), rendering the remaining subgraph test inefficient when applied in
an exhaustive procedure. Nevertheless, if edges of conserved candidate adjacency c
have maximal weight and the inclusion of c leads to a suboptimal solution to prob-
lem FF-Adjacencies, then any conserved candidate adjacency spanning c will also
lead to a suboptimal solution. Thus, it is often not necessary to apply the remaining
subgraph test for all conserved candidate adjacencies. We propose a preprocess-
ing algorithm that executes the remaining subgraph test only for reasonably large
deleted subgraphs, where the edges of the tested conserved candidate adjacency c
are artificially set to maximal edge weight. If the test then concludes that the estab-
lishment of c leads to a suboptimal solution, then all spanning conserved candidate
adjacencies can also be omitted from the solution space.

We will see in Section 3.9.2 that the utilized implementation of a maximum weight
matching algorithm was too slow to apply the remaining subgraph test in practice.

3.8 A heuristic solution to problem FF-Adjacencies

With increasing genome size, it may become infeasible in practice to solve prob-
lem FF-Adjacencies exactly. Moreover, even when genome sizes are small, but the
studied genomes accumulated many genome rearrangements so that no or only an
insufficient amount of anchors can be found, the running time and size of program

35

Chapter 3. Family-free adjacencies

Algorithm 2 Algorithm FFAdj-MCS

Input: Two genomes G, H, their corresponding gene similarity graph B◦ = (U, V, E), and α ∈ [0, 1]
Output: MatchingM⊆ E

1: Unseen← E
2: Initialize empty list L
3: while Unseen 6= ∅ do
4: Find an MCS S ⊆ Unseen with highest score Fα(S)
5: Unseen← Unseen \ S
6: Remove all edges incident to edges of S in Unseen.
7: Remove all singleton vertices of U and V
8: Elongate MCSs in L and possibly remove further edges from Unseen and further vertices from

U and V, respectively
9: Append S to L

10: end while
11: M =

⋃
S∈L S

FFAdj-2G inflate to a point where exact solutions can no longer be obtained by
today’s computational means. In this section, we present heuristic FFAdj-MCS as
described by Algorithm 2. FFAdj-MCS is an adaptation of the heuristic IILCS of
Angibaud et al. [6].

IILCS allows to compute the number of adjacencies between two genomes when
gene families are known, under an exemplar, intermediate, or maximum matching
model. It is a greedy algorithm based on the idea of solving the longest common
substring (LCS) problem: Given two strings S and T, find a longest string X that is a
substring of both S and T. Solving a gene family-based problem, IILCS iteratively
identifies LCSs in strings drawn from the alphabet of genes family identifiers rep-
resenting chromosomal sequences and subsequently matches their corresponding
genes until a satisfying matching is constructed.

This strategy can no longer be applied for problem FF-Adjacencies: Connected
components in the gene similarity graph of two genomes G and H do not form
gene families in general. Hence, their genes cannot be represented by a single gene
family identifier in a string representation of genomes G and H, without losing infor-
mation. However, in case edges are unweighted, chromosomes can be represented
as indeterminate strings. Indeterminate strings, which will be further discussed in
Chapter 5, are a class of strings that have one or more characters per position. Yet,
we aim to address the general case with arbitrary edge weights, therefore we can-
not make use of existing algorithms for the identification of LCSs in indeterminate
strings such as those described in [56]. Given the gene similarity graph B◦ of two
genomes G and H, our heuristic FFAdj-MCS matches in each iteration a maximal
sequence of consecutive conserved candidate adjacencies that locally maximizes the
objective function Fα, i.e., the convex combination of weights of conserved adjacen-
cies and edges. We call this maximal common substring (MCS) of two chromosomes

36

3.9. Experimental results and discussion

an MCS of highest score. Note that we allow maximal common substrings of size 1,
i.e. consisting only of single edges.

In each iteration, edges of the corresponding pairs of genes in identified MCSs
of highest score are matched. That is, adjacent edges that can no longer be part of
the matching are removed from gene similarity graph B◦. Furthermore, if in the
process of removing edges a gene becomes a singleton, it will be also removed from
the graph, facilitating the formation of a new immediate adjacency of its neighbor-
ing genes. We then aim to elongate previously processed MCSs by extending their
extremities along newly created adjacencies. In the next iteration, the highest scor-
ing MCS that has not been processed is identified and its edges are fixated in the
matching. Algorithm FFAdj-MCS stops if all edges of the gene similarity graph B◦
are matched.

The runtime of the heuristic can be summarized as follows: Given gene similarity
graph B◦ = (U, V, E) of two genomes, a maximal common substring of highest
weight can be found in O(|E|) time. In each iteration, at least one maximal common
substring is found. The update of the list of previously computed MCSs is achieved
in time linear to their size. Since the number of possible matched edges is bounded
by n = min(|U|, |V|), the algorithm terminates after O(n) iterations. The algorithm
therefore requires overall O(|E| · n) time and O(|E|+ |U|+ |V|) space.

3.9 Experimental results and discussion

We used the CPLEX2 solver to run program FFAdj-2G. The 0-1 linear program it-
self is generated by scripts written in the Python programming language and we
used the NetworkX library to run graph-based algorithms. Likewise, algorithm
FFAdj-MCS is implemented in Python. In support of simplified code but at the
expense of accuracy, our implemented algorithms do not allow a chromosome to
be circular, even though this is permitted by our presented model. However, the
maximal error made by this inaccuracy in comparing two circular chromosomes is
at most two conserved adjacencies, which is negligible in subsequent analyses.

We evaluate our algorithms on simulated datasets obtained by ALF [33] and on
a set of twelve γ-proteobacterial genomes from the dataset of Lerat et al. [66]. The
latter is used in several other works and is to some degree considered as a standard
reference dataset in comparative genomics [6, 21]. In both datasets, gene similarities
were obtained with the relative reciprocal BLAST score [84]. To this end, genes were
compared on the basis of their encoding protein sequence using BLASTP [3] with
an e-value threshold of 10−5, disabling the default query sequence filtering step.

37

Chapter 3. Family-free adjacencies

Parameter name Value

sequence evolution

substitution model WAG (amino acid substitution model)
insertion and deletion Zipfian distribution exponent c = 1.8214

insertion rate 0.0003
maximum insertion length 50

rate variation among sites Γ-distribution shape parameter a = 1
number of classes 5
rate of invariable sites 0.01

genome rearrangement

inversion rate 0.002
maximum inversion length 300 (25)

transposition rate 0.001
maximum transposition length 300 (25)
rate of inverted transposition 0.1

gene family evolution

gene duplication rate 0.005
max. no. of genes involved in one dupl. 5
probability of transposition after dupl. 0.5
fission/fusion after duplication 0.1
probability of rate change 0.2
rate change factor 0.9
probability of temporary rate change (duplicate) 0.5
temporary rate change factor (duplicate) 1.5
life of rate change (duplicate) 10 PAM
probability of temporary rate change (orig+duplicate) 0.3
temporary rate change factor (orig+duplicate) 1.2
life of rate change (orig+duplicate) 10 PAM

gene loss rate 0.005
maximum length of gene loss 5

gene fission/fusion rate 0.001
maximum number of fused genes 2

Table 3.1: Parameter settings for simulations generated by ALF [33].

3.9.1 Simulated genome evolution

ALF [33] is a popular framework to simulate genome evolution. The simulator cov-
ers many aspects of genome evolution from point mutations to global modifications.
The latter includes two types of genome rearrangements, as well as various options
to customize the process of gene family evolution. In our simulations, we mainly
use standard parameters suggested by the authors of ALF. In doing so, we focus on
three parameters that primarily influence the outcome of gene family-free genome
analysis: (i) the rate of sequence evolution, (ii) the rate of genome rearrangements,
and (iii) the rate of gene duplications and losses. We keep all three rates constant,
only varying the evolutionary distance between the generated extant genomes. Aim-
ing to assess the performance of our algorithms under extremal conditions, we set
the rate of rearrangements and gene duplications/losses considerably high, while

2http://www.ibm.com/software/integration/optimization/cplex-optimizer/

38

http://www.ibm.com/software/integration/optimization/cplex-optimizer/

3.9. Experimental results and discussion

20 30 40 50 60 70 80 90 100 110

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

genome size

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

FFAdj−2G without anchors

FFAdj−2G with anchors

FFAdj−MCS

Figure 3.4: Semilog plot of runtimes of program FFAdj-2G with and without anchors
and of program FFAdj-MCS as a function of genome size. The red “x” symbol on
the upper right indicates that the runtime of program FFAdj-2G without anchors for
genome size 100 exceeded two hours of computation, at which point the program
was terminated.

keeping sequence evolution in a moderate range. Inversions tend to occur more
frequently than transpositions in bacterial genomes. In fact, experimental results of
Blanchette et al. [18] indicate that inversions may occur 2 to 2.5 times as frequent.
Consequently, we set the ratio of inversions to transpositions to 2. We confine our
simulations to protein coding genes. Therefore, we chose the Whelan and Goldman
(WAG) model of amino acid evolution [113]. A comprehensive list of parameter
settings used in our simulations is shown in Table 3.1.

In all our simulations we generate two genomes that evolve along separate evolu-
tionary paths of variable lengths that emanate from a common ancestor. We use
the genome sequence of an Escherichia coli K-12 strain (NCBI accession number
NC_000913) as common ancestral genome, from which the two extant genomes
diverge. The genome sequence of the E. coli strain comprises 4320 protein coding
genes.

3.9.2 Runtime

We first assess the practical runtime of our algorithms. In particular, we are inter-
ested in the speed-up gained by identifying anchors and testing remaining subgraphs
as described in Sections 3.7.1 and 3.7.2, respectively. The NetworkX library provides

39

Chapter 3. Family-free adjacencies

an implementation of Zvi Galil’s maximum weight matching algorithm [44], which
we used in the remaining subgraph test. However, the time of a single maximum
weight matching in our dataset took more than five minutes to compute. This
renders the remaining subgraph test infeasible for our purposes, which require to
compute several hundred maximum weight matchings for each instance of our gen-
erated integer linear programs. We leave to future work further evaluation of other
implemented algorithms, in particular those that address the specific problem of
maximum weight matchings in bipartite graphs.

The identification of anchors turned out to perform exceedingly well. Whereas
running program FFAdj-2G on genomes beyond hundred genes became compu-
tationally infeasible, the reduction of the search space using anchors allows us to
compute exact solutions in pairwise comparisons between genomes larger than 4000
genes in less than two hours of computation. We assessed the runtime performance
of our programs as a function of genome size. To this end, we truncated the genome
sequence of the E. coli strain to lengths ranging from 30 to 100 genes. We further set
the maximum insertion and transposition length in genomes generated by ALF to
25 genes and generated genome pairs with an evolutionary distance of 125 percent
accepted mutations (PAM). We executed all our programs on a single CPU, allocat-
ing 2GB of working memory. For the sake of benchmarking the running times of
FFAdj-2G and FFAdj-MCS, we set α to 0.5, which is a considerably high value as
indicated by the analytical results visualized in Figure 3.3 of Section 3.7.1. Figure
3.4 visualizes the outcome of our evaluation. The runtime of program FFAdj-2G
shows large variations, but considerably decreases when anchors are supplied. The
variations in runtime are an artifact of CPLEX’s internal heuristics that can solve
certain optimization problems very efficiently, whereas solving others of equal or
lower complexity require considerably longer running times. The runtime of pro-
gram FFAdj-2G without anchors for genome size 100 exceeded two hours of com-
putation, at which point we terminated the program. Our heuristic FFAdj-MCS
exhibits short running times as anticipated.

3.9.3 Quality of orthology assignments

We generated seven datasets of genome pairs with evolutionary distances ranging
from 10 to 130 PAM. In doing so, we used the entire genome sequence of the afore-
mentioned E. coli strain as root genome. Also, we set the maximum insertion and
transposition length in these simulations to 300 genes. We further allowed CPLEX
to occupy 8 CPU cores and allocated 8GB of working memory. Table 3.2 summa-
rizes the main characteristics of the generated datasets. Note that the numbers of
transpositions shown in the table also include transpositions of genes after gene
duplication. In accord with our parameter settings, the number of ordinary trans-
positions (i.e., those not related to gene duplication events) is on average half the
number of inversions. Also, we computed the average node degree of gene similar-

40

3.9. Experimental results and discussion

PAM Inversions Transpositions Duplications Losses Avg. node degree

10 80 80 235 230 3.96
30 228 262 753 750 3.07
50 439 511 1383 1201 2.49
70 560 674 1685 1647 1.99
90 743 801 2307 2329 1.79

110 929 986 2626 2651 1.73
130 1114 1070 3055 3251 1.64

Table 3.2: Benchmark data comprising seven genome pairs generated by ALF [33].

ity graphs of the generated genome pairs by omitting singleton genes, which were
removed prior to analysis.

Table 3.3 lists counts of identified anchors for program FFAdj-2G. The large
number of identified anchors even in distant genome pairs which underwent many
genome rearrangements and events of gene duplication and loss, allowed us to ob-
tain exact results for almost all datasets. However, for α = 0.7, we were unable
to obtain exact results for datasets with evolutionary distance 10, 90 and 130 PAM.
Instead, we instructed CPLEX to terminate the computation after two hours and to
return a best feasible, possibly suboptimal, solution from its current solution pool.
Moreover, our attempts failed to obtain exact results for higher values of α. The
choice of α in the performance of heuristic FFAdj-MCS was only marginal, hence
we chose α = 0.1 by default.

Simulating genome evolution enables detailed knowledge of the occurring muta-
tional changes in generated genomes. ALF provides a two-dimensional array that
captures true orthology assignment between genes of generated genomes. We use
this information to evaluate the quality of solutions returned by our algorithms.
To this end, we counted true positive (TP), false positive (FP), true negative (TN) and
false negative (FN) orthology assignments returned by our algorithms FFAdj-2G
and FFAdj-MCS. Subsequently we computed their precision (TP/(TP + FP)) , re-

PAM FFADJ-2G: Number of conserved adjacencies / number of identified anchors FFAdj-MCS
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.1

10 3426 - 3588 3027 3606 2832 3620 2494 3622∗ 2181 3599
30 2324 - 2581 1952 2628 1820 2661 1608 2685 1410 2606
50 1416 - 1700 1148 1781 1048 1821 915 1847 777 1739
70 941 - 1170 759 1276 704 1322 629 1346 516 1254
90 606 - 790 455 886 405 929 347 770∗ 75 879

110 406 - 520 314 602 277 639 236 661 110 596
130 276 - 367 221 443 198 473 161 250∗ 19 436

Table 3.3: Number of conserved adjacencies and identified anchors in matchings ob-
tained by programs FFAdj-2G and FFAdj-MCS. The numbers marked by ∗ indi-
cate that the result was obtained from a possibly suboptimal solution returned by a
prematurely terminated instance of FFAdj-2G.

41

Chapter 3. Family-free adjacencies

0 20 40 60 80 100 120 140
0.85

0.9

0.95

1

PAM

p
re

c
is

io
n

α = 0.0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
FFAdj-MCS

(a)

0 20 40 60 80 100 120 140
0.85

0.9

0.95

1

PAM

re
c
a
ll

(o
n
e
−

to
−

o
n
e
)

α = 0.0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
FFAdj-MCS

(b)

Figure 3.5: Precision and recall of orthology assignments obtained by FFAdj-2G and
FFAdj-MCS for various choices of parameter α. The dashed lines with x marks
indicate results obtained from a possibly suboptimal solution of program FFAdj-2G
with α = 0.7.

call (TP/(TP + FN)), and accuracy ((TP + TN)/(TP + TN + FP + FN)). Yet, since
our algorithms aim to establish one-to-one homology assignments, it is a fact that
multiple true orthology assignments per gene lead to an undesired increase of false
negatives. High counts of false negatives could lead to the wrong conclusion that the
method is performing badly, where instead it might perform optimally as a method
which returns only one-to-one orthology assignments. Thus, unlike typical bench-
markings of tools for prediction of orthology assignments, we count as false negative
a gene that is not incident to any true positive orthology assignment. While this
slight change does not alter the general trend inherent to our statistical measures, it
does adjust their total quantities. In doing so, one minus recall and one minus accuracy
indicate the remaining potential for improved methods that restrict themselves to
the identification of one-to-one orthology assignments.

In our experiments, the number of true negatives was very high, which is typical
of tools for orthology detection. As a result, the accuracy in all experiments was
very close to 1. However, precision and recall of results obtained by our programs
varied with the evolutionary distance and parameter choices for α, as visualized in
Figure 3.5.

Recall, when α = 0, problem FF-Adjacencies coincides with the maximum weight-
ed matching problem. In other words, (when α is set to zero) FFAdj-2G obtains
maximum weight matchings without using any synteny information. Still, in terms
of precision and recall of orthology assignments, maximum weight matchings per-
form exceptionally well. However, the maximum weight matchings contained much
fewer conserved adjacencies than matchings returned by FFAdj-2G for α > 0, as
shown in Table 3.3. The gain of conserved adjacencies in orthology assignments of

42

3.9. Experimental results and discussion

Species/strain name Short name Accession no. Size (bp) #Genes

Buchnera aphidicola APS BAPHI NC_002528 640, 681 564
Escherichia coli K12 ECOLI NC_000913 4, 639, 675 4320
Haemophilus influenzae Rd HAEIN NC_000907 1, 830, 138 1657
Pseudomonas aeruginosa PA01 PAERU NC_002516 6, 264, 404 5571
Pasteurella multocida Pm70 PMULT NC_002663 2, 257, 487 2012
Salmonella typhimurium LT2 SALTY NC_003197 4, 857, 432 4423
Wigglesworthia glossinidia brevipalpis WGLOS NC_004344 697, 724 611
Xanthomonas axonopodis pv. citri 306 XAXON NC_003919 5, 175, 554 4312
Xanthomonas campestris XCAMP NC_003902 5, 076, 188 4179
Xylella fastidiosa 9a5c XFAST NC_002488 2, 679, 306 2766
Yersinia pestis CO_92 YPEST-CO92 NC_003143 4, 653, 728 3885
Yersinia pestis KIM5 P12 YPEST-KIM NC_004088 4, 600, 755 4048

Table 3.4: The genomic dataset of our analysis comprises 12 γ-proteobacteria from
Lerat et al. [66].

FFAdj-2G w.r.t. those identified by maximum weight matchings (i.e., FFAdj-2G
with α = 0) ranged from 4.7% for PAM 10 and α = 0.1 to 71.4% for PAM 130 and
α = 0.5.

3.9.4 Experimental results on a biological dataset

We evaluated our programs on a set of 12 γ-proteobacterial genomes from the
dataset of Lerat et al. that was also used by Angibaud et al. [6] who computed the
breakpoint distance between genomes with duplicates, thereby employing various
matching models. The genomic data including gene annotations have been obtained
from NCBI under the accession numbers listed in Table 3.4. All genomes comprise
a single, circular chromosome. The genomes were “linearized” in the order inherent
to the NCBI data, and telomeres were added at the beginning and at the end of the
resulting chromosomal sequences.

Table 3.5 lists in detail the main results of our analysis. In all 66 pairwise compar-
isons, exact results with program FFAdj-2G could be obtained for α = 0.1. How-
ever, for α = 0.5 the computation of 16 pairwise comparisons exceeded two hours
of computation. Just as in previous experiments, we terminated the computation
and reported a feasible, possibly suboptimal, solution identified by CPLEX.

In order to assess the gain of the family-free analysis, we compare the results of
FFAdj-2G and FFAdj-MCS with adjacencies obtained by program Adjacencies-
Intermediate-Matching of Angibaud et al. [6]. The linear program Adjacen-
cies-Intermediate-Matching maximizes the number of adjacencies under the
intermediate model between two genomes with gene family constraints. To compare
the number of adjacencies (a common measure of these three programs) correctly,
we must take into account two facts. First, the number of genes of the studied
genomes differ. In [6], the authors used gene annotations and gene families that

43

Chapter 3. Family-free adjacencies

Angibaud et al. [6] FFADJ-2G FFAdj-MCS
α = 0.1 α = 0.5 α = 0.1

Genome 1 Genome 2 Size #Adj Size #Adj Size #Adj Size #Adj

BAPHI ECOLI 534 377 559 393 548 408 559 394
BAPHI HAEIN 432 161 469 164 464 170 469 164
BAPHI PAERU 470 229 529 245 521 260 529 249
BAPHI PMULT 448 188 490 193 487 200 490 193
BAPHI SALTY 535 376 559 393 548 407 559 393
BAPHI WGLOS 374 203 421 221 417 225 419 221
BAPHI XAXON 415 188 499 202 494 209 499 202
BAPHI XCAMP 415 188 496 201 490 208 495 201
BAPHI XFAST 399 162 467 172 463 178 467 172
BAPHI YPEST-CO92 532 361 558 377 549 387 558 377
BAPHI YPEST-KIM 525 348 553 372 543 382 553 372
ECOLI HAEIN 1216 550 1370 549 1350 577 1370 554
ECOLI PAERU 1734 651 2656 704 1670* 499* 2623 736
ECOLI PMULT 1366 662 1641 685 1600 732 1631 685
ECOLI SALTY 3152 2874 3413 2827 3275 2953 3411 2831
ECOLI WGLOS 573 380 607 410 603 412 607 409
ECOLI XAXON 1268 425 2121 500 1528* 385* 2084 528
ECOLI XCAMP 1266 420 2102 497 2037* 478* 2073 518
ECOLI XFAST 889 324 1280 368 1254 427 1267 388
ECOLI YPEST-CO92 2341 1744 2666 1732 2568 1858 2667 1736
ECOLI YPEST-KIM 2355 1747 2682 1747 2578 1869 2678 1751
HAEIN PAERU 949 333 1250 365 1230 405 1246 376
HAEIN PMULT 1375 849 1412 838 1397 856 1414 838
HAEIN SALTY 1227 550 1387 555 1365 582 1385 557
HAEIN WGLOS 443 165 488 174 488 180 488 179
HAEIN XAXON 775 241 1092 260 1074 282 1087 265
HAEIN XCAMP 769 238 1079 261 1058 280 1070 262
HAEIN XFAST 674 205 892 229 884 240 888 230
HAEIN YPEST-CO92 1172 522 1340 543 1314 574 1337 546
HAEIN YPEST-KIM 1171 517 1336 536 1309 569 1334 540
PAERU PMULT 1055 373 1483 417 1447* 467* 1472 435
PAERU SALTY 1736 644 2700 713 1673* 502* 2664 740
PAERU WGLOS 511 251 572 278 567 291 573 281
PAERU XAXON 1626 609 2721 734 1745* 470* 2671 770
PAERU XCAMP 1609 596 2684 704 1731* 459* 2644 731
PAERU XFAST 978 405 1407 487 1373* 538* 1392 495
PAERU YPEST-CO92 1662 671 2399 747 1633* 538* 2370 784
PAERU YPEST-KIM 1667 662 2409 744 1625* 520* 2381 775
PMULT SALTY 1375 670 1650 705 1597 753 1643 701
PMULT WGLOS 468 197 520 211 516 220 520 213
PMULT XAXON 832 274 1271 312 1251 342 1250 317
PMULT XCAMP 823 267 1248 299 1227 329 1237 303
PMULT XFAST 716 234 974 266 960 285 969 268
PMULT YPEST-CO92 1320 648 1593 680 1561 729 1594 684
PMULT YPEST-KIM 1316 639 1590 676 1556 726 1588 681
SALTY WGLOS 572 381 606 408 601 411 606 408
SALTY XAXON 1289 434 2115 497 1510* 371* 2082 510
SALTY XCAMP 1282 427 2101 495 1456* 368* 2075 511
SALTY XFAST 895 325 1303 392 1276 439 1291 399
SALTY YPEST-CO92 2350 1758 2691 1724 2580 184 2691 1714
SALTY YPEST-KIM 2368 1761 2708 1729 2583 1866 2707 1722
WGLOS XAXON 464 194 537 213 526 224 537 213
WGLOS XCAMP 463 194 539 217 530 227 539 216
WGLOS XFAST 436 163 490 175 483 183 490 175
WGLOS YPEST-CO92 570 377 604 404 601 408 604 407
WGLOS YPEST-KIM 561 364 598 396 594 400 598 399
XAXON XCAMP 3438 3256 3635 3223 3554 3320 3645 3221
XAXON XFAST 1476 1075 1604 1083 1576 1105 1604 1078
XAXON YPEST-CO92 1181 420 1916 482 1820* 470* 1887 499
XAXON YPEST-KIM 1183 422 1935 475 1460* 368* 1906 490
XCAMP XFAST 1465 1060 1601 1078 1578 1104 1600 1073
XCAMP YPEST-CO92 1168 412 1892 466 1831* 456* 1860 490
XCAMP YPEST-KIM 1162 412 1915 457 1863* 514* 1880 483
XFAST YPEST-CO92 866 323 1234 379 1211 413 1225 386
XFAST YPEST-KIM 861 315 1230 371 1208 402 1223 379
YPEST-CO92 YPEST-KIM 3387 3327 3629 3558 3622 3570 3632 3552

Table 3.5: Matching size (Size) and number of conserved adjacencies (#Adj) of solu-
tions obtained by an earlier study of Angibaud et al. [6], programs FFAdj-2G, and
FFAdj-MCS. The numbers marked by ∗ indicate that the result was obtained from
a possibly suboptimal solution returned by a prematurely terminated instance of
FFAdj-2G.

44

3.9. Experimental results and discussion

are reported in [21] whereas in our current study we employed gene annotations
from NCBI. Nevertheless, the difference in number of genes is on average 0.02%
per genome. Secondly, the genes for Adjacencies-Intermediate-Matching
are unsigned, which artificially increases the number of adjacencies. Taking into
account the differences in gene number, we observed more adjacencies than in the
matchings of Angibaud et al. [6]. Thereby, FFAdj-2G estimated on average 8.4% for
α = 0.1 and 8.2% for α = 0.5, FFAdj-MCS even 10.0% more conserved adjacencies.
Furthermore, the matching produced by FFAdj-2G was on average 28% (α = 0.1),
respectively 18.2% (α = 0.5), and by FFAdj-MCS on average 27.2% larger than those
produced by Angibaud et al. [6].

3.9.5 Discussion

In this chapter, we introduced a model for the identification of conserved adjacen-
cies between two or more genomes that does not require prior knowledge of gene
family assignments. To this end, we formulated problem FF-Adjacencies for pair-
wise comparisons which was subsequently extended for the case of more than two
genomes. Problem FF-Adjacencies is parameterized by α ∈ [0, 1], which allows to
balance the impact of synteny (i.e., conserved adjacencies) and similarities between
genes on its solutions. We showed that for 0 < α < 1

3 , problem FF-Adjacencies in
pairwise comparisons is NP-hard.

We then presented exact program FFAdj-2G and heuristic FFAdj-MCS. We fur-
ther explored the space of feasible solutions to problem FF-Adjacencies analytically
in context of the 0-1 linear program FFAdj-2G. This allowed us to remove subopti-
mal solutions from the solution space. In doing so, we identified simple conserved
candidate adjacencies which were used as anchors in constructing an optimal so-
lution to problem FF-Adjacencies between two genomes. By that, the number of
variables and constraints in practical applications of program FFAdj-2G was re-
duced, resulting in a tremendous speedup, as shown in subsequent experiments.
This allows us to compute exact solutions to problem FF-Adjacencies for genomes
with more than 4000 genes.

The choice of α in problem FF-Adjacencies does not only influence the number
of conserved adjacencies and the quality of orthology assignments in its solutions.
It also has a high impact on the number of anchors that we are able to identify in
the gene similarity graph of two genomes. That is to say, with higher α, the number
of identified anchors decreases. This was predicted by our analytic framework, and
subsequently confirmed in experiments on simulated and biological datasets. For
α > 0.7, the number of identified anchors was too low to compute exact solutions
for problem FF-Adjacencies with program FFAdj-2G.

Experiments on simulated datasets showed high precision, recall, and accuracy
of one-to-one orthology assignments derived from exact and heuristic solutions
obtained by programs FFAdj-2G and FFAdj-MCS. Yet, maximum weight match-

45

Chapter 3. Family-free adjacencies

ings (i.e, solutions to problem FF-Adjacencies for α = 0) performed equally well
w.r.t. to the quality of orthology assignments, while exhibiting significantly fewer
conserved adjacencies. This result emphasizes the underlying goal in solving prob-
lem FF-Adjacencies and in performing gene family-free analysis in general: To find
one-to-one homology assignments between two genomes that maximize a measure
of gene order similarity. That being said, in general there exist many other synteny-
independent true homology assignments between genes of two genomes that un-
derwent a sufficient amount of gene duplication and loss. Our results show that the
use of synteny improved the precision of orthology assignments only by 3% at most
and made little to no improvements on the methods’ recall. This result is backed by
benchmarks of the orthology detection tool PoFF in [65], which uses our heuristic
program FFAdj-MCS to marginally improve orthology assignments.

Lastly, we computed the number of conserved adjacencies in pairwise compar-
isons of twelve γ-proteobacterial genomes and compared our results to that of
Angibaud et al. [6]. In doing so, we showed that our model establishes consider-
ably larger matchings (leading to more one-to-one orthology assignments) between
genes of the bacterial genomes. Moreover, our matchings contain on average more
conserved adjacencies, too.

46

Chapter 4
Family-free median

In the previous chapter we mainly focused on a measure of gene family-free genome
comparison for two genomes. Here, we go beyond pairwise comparisons and dis-
cuss a gene family-free model for the reconstruction of a possible candidate for the
common ancestor of three genomes. In doing so, we extend the gene family-based
problem of computing the mixed multichromosomal breakpoint median to a gene family-
free setting. The present chapter is similarly structured as the previous: After a short
review of the gene family-based problem in the subsequent section, we propose a
gene family-free generalization. We then discuss its computational complexity by
proving that the presented problem is MAX SNP-hard. Further, we formulate a 0-1
linear program that allows us to compute exact solutions. Whereas our model for
computing family-free adjacencies between two genomes tolerated events of gene
duplication and loss, the herein presented model is susceptible to gene losses and
resolves gene duplications only to a limited extent. We discuss the effects of gene
family evolution in our presented model and proceed to present a 0-1 linear pro-
gram for computing gene family-free adjacencies between three genomes, thereby
extending results of the previous chapter. Our algorithm gives rise to a heuristic
approach to construct a median of three genomes in a family-free setting. We then
compare both methods in simulated datasets. Lastly, we use our heuristic method to
reconstruct the genome sequence of the black death again from genome sequences of
three Yersinia pestis strains. We compare our results to those of Rajaraman et al. [87].

4.1 Gene family-based median of three

Ancestral gene order reconstruction represents a prominent path of research in
genome analysis which has been studied intensely in the past decades. Hereby,
the median of three constitutes a fundamental problem corresponding to the simplest
unrooted phylogeny that contains an internal node. The median of three asks for
the reconstruction of a fourth, ancestral genome, called a median, from three extant

47

Chapter 4. Family-free median

genomes. To this end, one aims at minimizing the sum of pairwise distances be-
tween a median and the extant genomes, given a gene order distance measure of
choice. Often, karyotypic constraints are raised, such as permitting only linear or
circular chromosomes, or limiting the number of chromosomes in a median. Me-
dian problems for most distance measures are NP-hard, with the notable exception
of the SCJ median [40] and the mixed multichromosomal breakpoint median [106].
For the case of three extant genomes, the latter can be stated as follows:

Problem 5 (Mixed multichromosomal breakpoint median of three) Given three ge-
nomes G, H, and I of equal size |G| = |H| = |I| and a one-to-one homology assignment
H1 such that for every gene g in C(G) there exist exactly two genes {h, i} ⊂ [g]H1 with
h ∈ C(H) and i ∈ C(I). Find a genome M that minimizes the sum of distances

dBP(M, G) + dBP(M, H) + dBP(M, I) ,

where |M| = |G| and for each gene g ∈ C(G) there exists a unique gene m ∈ C(M) with
m ∈ [g]H1 . Genome M is a mixed multichromosomal breakpoint median of genomes
G, H, and I.

Tannier et al. presented in [106] a maximum weighted matching-based approach
that solves Problem 5 in polynomial time. To this end, each gene family is assigned
a unique identifier. Subsequently, genes are represented by their gene family label.
Then, a graph Γ is constructed, in which each gene extremity xa of a gene labeled
with gene family x and terminal a ∈ {h, t} corresponds to a vertex in Γ. Edges are
drawn between all pairs of gene extremities, corresponding to possible adjacencies
in a median M. Each edge is weighted 0, 1, 2, or 3 according to its number of
occurrences in extant genomes G, H, and I. Lastly, each vertex xa gives rise to an
additional, telomeric vertex txa in Γ that is connected to xa by an edge weighted
0, 1

2 , 1, or 3
2 according to half the number of occurrences of telomeric adjacency {◦, xa}

in extant genomes G, H, and I. A solution to the maximum weighted matching
problem in graph Γ is a solution to Problem 5 [106]. Recently, Kováč proposed
in [61] a similar approach on the basis of solving the computationally less expensive
maximum cardinality matching problem.

4.2 A family-free generalization

Just like Problem 5, the family-free median problem asks for a fourth genome M
that maximizes the sum of pairwise adjacency scores to three given extant genomes
G, H, and I. However, the gene content of the requested median M must first be
defined: each gene m ∈ C(M) must be unambiguously associated with a triple of
extant genes (g, h, i), g ∈ C(G), h ∈ C(H), and i ∈ C(I). Moreover, the computation
of adjacency scores of conserved adjacencies between the median and its extant
genomes demands knowledge of the gene similarities between each triple of extant
genes (g, h, i) and its corresponding, presumably extinct, gene m:

48

4.2. A family-free generalization

G

H

I

g1 g2 g3 g4

h1 h2

h3

i1 i2 i3

Figure 4.1: Gene similarity graph of three genomes G, H, and I of Example 4. The
colored components give rise to candidate median genes, some of which are con-
flicting.

g

i

h

m

σ(g, h)

σ(g, i) σ(h, i)

? ?

?

Since gene similarities to median genes are generally not given, we derive them from
gene similarities between their corresponding extant genes. Following our scoring
scheme of adjacency scores, we define the similarity between genes g, h, and i to its
counterpart m as the geometric mean of their pairwise similarities:

σ(g, m) = σ(h, m) = σ(i, m) ≡ 3
√

σ(g, h) · σ(g, i) · σ(h, i) (4.1)

In the following we make use of mapping πG(m) ≡ g, πH(m) ≡ h, and πI(m) ≡ i
to relate gene m with its extant counterparts. Two candidate median genes or telom-
eres m1 and m2 are conflicting if m1 6= m2 and the intersection between associated
gene sets {πG(m1), πH(m1), πI(m1)} and {πG(m2), πH(m2), πI(m2)} is non-empty.
A median M is called conflict-free if no two genes or telomeres m1, m2 ⊆ C(M) are
conflicting.

Example 4 Genomes G, H, and I visualized in Figure 4.1 give rise to the following four
candidate median genes: m1 = (g1, h1, i2) represented by the yellow component, m2 =

(g2, h2, i1) represented by the red component, m3 = (g3, h3, i2) represented by the blue
component, and m4 = (g4, h3, i3) represented by the green component. Further, candidate
median gene pairs (m1, m3) and (m3, m4) are conflicting, respectively.

49

Chapter 4. Family-free median

We now introduce the problem of obtaining a median in a gene family-free set-
ting:

Problem 6 (FF-Median) Given three genomes G, H, and I, and gene similarity measure
σ, find a conflict-free median M, which maximizes the following formula:

F�(M) = ∑
{ma

1,mb
2}∈A(M)

∑
X∈{G,H,I},

{πX(m1)
a,πX(m2)

b}∈A(X)

s(ma
1, mb

2, πX(m1)
a, πX(m2)

b), (4.2)

where a, b ∈ {h, t} and s(·) is the adjacency score as defined by Equation (3.1).

The adjacency score of adjacency pair {ma
1, mb

2}, {πX(m1)
a, πX(m2)b}, where {ma

1,
mb

2} ∈ A(M) and X ∈ {G, H, I}, can be entirely expressed in terms of pairwise
similarities between genes of extant genomes, G, H, and I, using Equation (4.1):

s(ma
1, πX(m1)

a, mb
2, πX(m2)

b) = 6

√
∏

{Y,Z}⊂{G,H,I}
σ(πY(m1), πZ(m1)) · σ(πY(m2), πZ(m2))

Note that the right side of the last equation is independent of genome X. From
Equation (4.2) it becomes apparent that an adjacency in median M has only an
impact in a solution to problem FF-Median if it participates in a conserved adjacency
with genes from at least one extant genome. To indicate the presence of an adjacency
{xa

1, xb
2} in an extant genome X, we use the following function

IX(xa
1, xb

2) =

{
1 if {xa

1, xb
2} ∈ A(X)

0 otherwise.
(4.3)

Moreover, a median gene can only give rise to a conserved adjacency with non-zero
adjacency score, if all pairwise similarities of its corresponding extant genes g, h, i
are non-zero. Thus, the search for M can be limited to those triplet sets of extant
genes, with non-zero pairwise similarities. Henceforth, we assume that each gene
in all extant genomes participates in at least one such triplet, otherwise it will be
omitted in its corresponding genomic sequence.

In the following, a median gene m and its extant counterparts (g, h, i) are treated
as equivalent. We denote the set of all candidate median genes by

Σ� = {(g, h, i) | g ∈ C(G), h ∈ C(H), i ∈ C(I) : σ(g, h) · σ(g, i) · σ(h, i) > 0} . (4.4)

Each pair of median genes (g1, h1, i1), (g2, h2, i2) ∈ Σ� and terminals a, b ∈ {h, t}
give rise to a candidate median adjacency {(ga

1, ha
1, ia

1), (gb
2, hb

2, ib
2)} if (ga

1, ha
1, ia

1) 6= (gb
2,

hb
2, ib

2), and (ga
1, ha

1, ia
1) and (gb

2, hb
2, ib

2) are non-conflicting. We denote the set of all
candidate median adjacencies and the set of all conserved candidate median adjacen-
cies by A� = {{ma

1, ma
2} | m1, m2 ∈ Σ�, a, b ∈ {h, t}} and AC

� = { {ma
1, mb

2} ∈ A� |
∑X∈{G,H,I} IX(πX(m1)

a, πX(m2)b) ≥ 1}, respectively.

50

4.3. Complexity of problem FF-Median

m1 m2 m3 m4

G

H

I

gt
1 gh

1 gt
2 gh

2 gt
3 gh

3 gt
4 gh

4

ht
1hh

1 ht
2hh

2

ht
3hh

3

it1 ih1 it2 ih2 it3 ih3

2 3

1 1

1

{mh
1 , mt

2}

{mh
2 , mt

1}

{mh
2 , mt

3}

{mh
2 , mt

4}

{mh
1 , mt

4}

Figure 4.2: (a) Gene similarity graph of three genomes G, H and I of Example 4
and (b) its corresponding MAX WIS instance Λ with the weights of vertices written
inside the circles.

4.3 Complexity of problem FF-Median

In this section, we discuss an inherent relation between problem FF-Median and the
maximum weighted independent set problem. Given a graph Λ = (V, E), the maximum
independent set problem (MAX IS) asks for a maximum cardinality subset I ⊆ V such
that no two vertices in I are connected by an edge of E. Any subset I ⊆ V, whose
induced subgraph (I , E) is entirely disconnected (i.e., contains no edges), is called
an independent set. The maximum weighted independent set problem (MAX WIS) is a
variant, in which each vertex v in V is assigned weight w(v). MAX WIS asks for
an independent set I ⊆ V of maximum weight. Both MAX IS and MAX WIS are
NP-hard problems [45].

It is straightforward to see that problem FF-Median can be phrased as a MAX WIS
problem: Construct graph Λ = (V, E) with vertex set V = AC

� . Each vertex
{ma

1, mb
2} ∈ V is weighted according to the cumulative sum of adjacency scores

of conserved adjacencies with genes in extant genomes:

w({ma
1, mb

2}) = 6

√
∏

{X,Y}⊂{G,H,I}
σ(πX(m1), πY(m1))σ(πX(m2), πY(m2))

· ∑
X∈{G,H,I}

IX(πX(m1)
a, πX(m2)

b)
(4.5)

Further, any two pair of vertices {ma
1, mb

2}, {mc
3, md

4} ∈ V, a, b, c, d ∈ {h, t}, are con-
nected by an edge of E if (1) any two of the candidate median genes m1, m2, m3, m4

are conflicting, or (2) any two of the extremities ma
1, mb

2, mc
3, md

4 are identical.

Example 4 (continued) Figure 4.2 (a) depicts the gene similarity graph of the same three
genomes G, H, and I as in Figure 4.1, this time arcs are colored and correspond to con-
served adjacencies between pairs of non-conflicting candidate median genes. In doing so, the

51

Chapter 4. Family-free median

orientation of all genes in the diagram is always left (tail) to right (head). Figure 4.2 (b)
visualizes the constructed MAX WIS instance Λ. Let all edges corresponding to pairwise
similarities between genes have uniform weight, then the following solutions with score 3
are co-optimal for problem FF-Median and MAX WIS: (i) A(M) = {{mh

2, mt
3}} (purple

vertex in Λ), (ii) A(M′) = {{mh
1, mt

2}, {mh
2, mt

1}} (yellow and red vertices in Λ), (iii),
A(M′′) = {{mh

1, mt
2}, {mh

2, mt
4}} (yellow and green vertices in Λ).

Theorem 2 Problem FF-Median is MAX SNP-hard.

4.3.1 Reduction

The maximum independent set problem for graphs bounded by node degree 3, denoted
as MAX IS-3 is MAX SNP-hard [81]. The corresponding decision problem can be
informally stated as follows: Given a graph Λ bounded by degree 3 and some
number l ≥ 1, does there exists a set of vertices V ′ ⊆ V of size |V ′| = l whose
induced subgraph is unconnected? In the following, we present a transformation
scheme R to phrase Λ as FF-median instance R(Λ) = (G, H, I, σ) such that the value
F�(M) of a median M of R(Λ) is limited by F�(M) ≤ 2 · l + 3. In doing so, we
associate vertices of V with genes of extant genomes G, H and I. In order to keep
track of associated genes, we denote by function ξ(x) the list of vertices associated
with gene x. We further introduce two types of unassociated genes, “∅” and “∗”,
whose members are identified by subscript notation.

Transformation R:

1. Construct genome G such that for each vertex v ∈ V there exist two associated
genes gv, ḡv ∈ C(G), i.e. ξ(gv) = ξ(ḡv) = v. Further, let each gene pair gv, ḡv

form a circular chromosome, giving rise to adjacency set A(G) = {{ḡh
v , gt

v},
{gh

v , ḡt
v} | v ∈ V, gv, ḡv ∈ C(G)}.

2. For each edge (u, v) ∈ E construct a circular chromosome Xuv hosting two
genes xuv, x∅ ∈ C(Xuv), with gene xuv being associated with both vertices u
and v and gene x∅ being unassociated. Further, let both genes form a circular
chromosome, giving rise to adjacency set A(Xuv) = {{xh

uv, xt
∅}, {xh

∅, xt
uv}}.

3. Assign each chromosome constructed in the previous step either to genome
H or to genome I such that each vertex v ∈ V is associated with at most two
genes per genome.

4. Complete genomes H and I with additional circular chromosomes Xv where
C(Xv) = {xv, x∅} and A(Xv) = {{xh

v , xt
∅}, {xh

∅, xt
v}} such that each vertex in

V is associated with exactly two genes per genome.

5. For each vertex v ∈ V, let g, ḡ ∈ C(G), h, h̄ ∈ C(H), and i, ī ∈ C(I) be the pairs
of genes associated with v, i.e. ξ(g) = ξ(ḡ) = ξ(h) ∩ ξ(i) = ξ(h̄) ∩ ξ(ī) = v.

52

4.3. Complexity of problem FF-Median

a

c

b

d

(a)

a

ā

b

b̄

c

c̄

d

d̄

∗

∗
ab

∅

ād

∅

cd̄

∅

b̄

∅

c̄

∅

∗

∗
bd

∅

b̄c

∅

a

∅

ā

∅

c̄

∅

d̄

∅

∗

∗

G

H

I

(b)

Figure 4.3: (a) A simple graph bounded by degree three and (b) a corresponding FF-
Median instance constructed with transformation scheme R.

Assign gene similarities σ(g, h) = σ(g, i) = σ(h, i) = 1 and σ(ḡ, h̄) = σ(ḡ, ī) =
σ(h̄, ī) = 1.

6. Add a copy of circular chromosome X∗ to each genome G, H, and I, where
C(X∗) = {x∗, x̄∗} and A(X∗) = {{xh

∗ , x̄t
∗}, {x̄h

∗ , xt
∗}}. Let g∗, ḡ∗ ∈ C(G), h∗, h̄∗ ∈

C(H), and i∗, ī∗ ∈ C(I), set the gene similarity score between all pairs of genes
in {g∗, h∗, i∗} and {ḡ∗, h̄∗, ī∗} respectively, to 1. Lastly, set the gene similarity
score of all pairs of unassociated genes of type “∅” including genes g∗, ḡ∗ to
1
4 .

Except for step 3, none of the instructions of transformation scheme R are com-
putationally challenging. Note that in step 3 the demanded partitioning of chromo-
somes into genomes H and I is always possible as consequence of Vizing’s Theo-
rem [110], by which every graph with maximum node degree d is edge-colorable
using at most d or d + 1 colors. Hence, using colors χ1, χ2, χ3, χ4 with χ1 = χ2 ≡ I,
χ3 = χ4 ≡ H and Misra and Gries’ algorithm [75], edges of graph Λ = (E, V) can be
partitioned into two groups in O(|E||V|) time implying an assignment to genomes
H and I.

Example 5 Figure 4.3 (b) shows a FF-Median instance constructed with transformation
scheme R from the simple graph depicted in Figure 4.3 (a). Gene similarities between genes
are not shown, but can be derived from the genes’ labeling.

We structure our proof that the presented transformation is in fact a valid map-
ping of an MAX IS-3 instance to an instance of FF-Median into three different lem-
mas:

53

Chapter 4. Family-free median

Lemma 4 Given a median M of FF-Median instance R(Λ) = (G, H, I, σ), (1) for each
median gene (g, h, i) ∈ C(M) where g, h, or i are associated with vertices in V(Λ) holds
ξ(g) = ξ(h) ∩ ξ(i) = v, v ∈ V(Λ); (2) there exist at most two median genes whose
corresponding extant genes are not associated to any vertex in V(Λ).

Proof: Assume for contradiction that claim (1) does not hold. Then either ξ(g) 6=
ξ(h) ∩ ξ(i), or ξ(h) ∩ ξ(i) = ∅, both of which violate the constraint of establishing
gene similarities between associated genes that is given in step 5. For claim (2), ob-
serve that the only unassociated genes in genome G are genes g∗ and ḡ∗ introduced
in step 6, limiting the overall number of unassociated genes in any median M. �

Lemma 5 The conserved adjacency set of any median M of FF-Median instance R(Λ) =

(G, H, I, σ) is of the form A(M) ∩ AC
� = AG

� (M) ∪ {{mh
∗ , mt

∗}, {mh
∗ , mt

∗}}, where the
extant genes corresponding to m∗ and m∗ are all unassociated genes of type “∗” and
A(M)G

� ⊆
{
{mh

1 , mt
2} ∈ AC

� | ξ(πG(m1)) = ξ(πG(m2))
}

.

Proof: Observe that both candidate median adjacencies a∗ = {mh
∗ , mt

∗} and ā∗ =
{mh
∗ , mt

∗} are conserved in all three genomes, whereas all other conserved candidate
adjacencies between associated and unassociated genes can be at most conserved
in H and I. Establishing adjacencies a∗, ā∗ gives rise to a cumulative adjacency
score of 6. Conversely, up to 4 non-conflicting adjacencies between associated and
unassociated genes can be established that are conserved in both genomes H and I.
However, since such adjacencies are only conserved between unassociated genes of
type “∅” whose gene similarities are set to 1

4 , the best cumulative adjacency score
can not exceed 4. Thus, adjacencies a∗, ā∗ must be contained in any median. Further,
because of this and the fact that in both genomes H and I, each gene associated
with vertices of V(Λ) is only adjacent to an unassociated gene, M cannot contain
adjacencies that are conserved in extant genomes other than genome G, which are
the adjacencies of each gene pair (gv, ḡv) associated with the same vertex v ∈ V(Λ).
�

Lemma 6 Given FF-median instance R(Λ) = (G, H, I, σ), let mu, mv be any pair of can-
didate median adjacencies of A� whose corresponding extant genes are associated to vertices
u, v ∈ V(Λ), then mu, mv are conflicting if and only if (u, v) ∈ E.

Proof: By construction in step 5 of transformation scheme R, each vertex v ∈ V
is associated with exactly two candidate median genes mv = (g, h, i), mv = (ḡ, h̄, ī),
mv, mv ∈ Σ�, such that ξ(g) = ξ(h) ∩ ξ(i) = v and ξ(ḡ) = ξ(h̄) ∩ ξ(ī) = v. Further,
let u be another vertex of V(Λ), such that (u, v) ∈ E(Λ), and mu, mu are its two
corresponding candidate median genes. Then, by construction in step 2, there exists
exactly one extant gene x with ξ(x) = uv (which, by assignment in step 3, is either
contained in genome H or in genome I). Consequently, either mu is in conflict with
mv, or mu with mv, or mu with mv, or mu with mv. Recall that by construction in step

54

4.3. Complexity of problem FF-Median

2 in R and by Lemma 5, mu, mu and mv, mv form conserved candidate adjacencies
{mh

u, mt
u}, {mh

u, mt
u} and {mh

v , mt
v}, {mh

v , mt
v}, respectively. Clearly, independent of

which of the candidate median gene pairs of u and v are in conflict, both pairs of
candidate median adjacencies are in conflict with each other.

Now, let u, v be two vertices of V(Λ) such that edge (u, v) 6∈ E(Λ), then there
exists no gene x in extant genomes H and I with ξ(x) = uv. Even more, due
to Lemma 4, there cannot exist a candidate median gene (g, h, i) with {u, v} ⊆
ξ(g) ∪ ξ(h) ∪ ξ(i). Thus, the candidate median genes of u and v are not conflicting
and neither are their corresponding candidate median adjacencies. �

We proceed to show that the given transformation scheme gives rise to an ap-
proximation preserving reduction known as L-reduction. An L-reduction reduces a
problem P to a problem Q by means of two polynomial-time computable transfor-
mation functions: A function f : P → Q′ ⊆ Q that maps each instance of P onto
an instance of Q, herein represented by transformation scheme R, and a function
g : Q′ → P to transform any feasible solution of an instance in Q′ to a feasible solu-
tion of an instance of P. Here, a feasible solution means any – not necessarily optimal
– solution that obeys the problem’s constraints. A feasible solution of FF-Median
instance (G, H, I, σ) is an ancestral genome X where C(X) ⊆ Σ� and A(X) ⊆ A� such
that A(X) is conflict-free. We give the following transformation scheme to map
ancestral genomes of an FF-Median instance to solutions of a MAX IS-3 instance:

Transformation S: Given any ancestral genome X of R(Λ), return {ξ(πG(m1)) |
{ma

1, mb
2} ∈ A(X) : IG(πG(m1)

a, πG(m2)b) = 1 and ξ(πG(m1)) 6= ∅}.

We define score function s�(X) ≡ 1
2F�(X)− 3 of an ancestral genome X. For (R, S)

to be an L-reduction the following two properties must hold for any given MAX IS-3
instance (Λ, l): (1) There is some constant α such that for any median M of the trans-
formed FF-Median instance R(Λ) holds s�(M) ≤ α · l; (2) There is some constant β

such that for any ancestral genome X of R(Λ) holds l− |S(X)| ≤ β · |s�(M)− s�(X)|.
We proceed to prove the following lemma:

Lemma 7 (R, S) is an L-reduction of problem MAX IS-3 to problem FF-Median with α =

β = 1.

Proof: For any median M of FF-Median instance R(Λ), the number of conserved
median adjacencies with correspondence to the same vertex of Λ is two, giving
rise a cumulative adjacency score of two. From Lemmata 5 and 6 immediately
follows that any ancestral genome of R(Λ) that maximizes the number of conserved
adjacencies also maximizes the number of independent vertices in Λ. Recall that the
two conserved adjacencies between unassociated genes of type “∗” (which are part
of all medians) give rise to a cumulative adjacency score of 6, we conclude that
|A(M) ∩AC

� | − 2 = 1
2F�(M)− 3 = s�(M) = l, thus α = 1.

55

Chapter 4. Family-free median

Because l = sλ(M), it remains to show that l − |S(X)| ≤ β|l − s�(X)|. In a sub-
optimal ancestral genome of R(Λ), median genes with no association to vertices of
Λ can also contain extant genes of type “∅”. These unassociated median genes can
form “mixed” conserved adjacencies with genes that are associated with vertices
of Λ. Such mixed conserved adjacencies have no correspondence to vertices in Λ
and do not contribute to the transformed solution S(X) of an ancestral genome X.
Yet, as mentioned earlier, the cumulative adjacency score of all mixed conserved
adjacencies can not not exceed 4. Therefore it holds that |S(X)| ≥ s�(X) and we
conclude β = 1. �

4.4 An exact solution to problem FF-Median

Being a well-studied problem, there exist various exact and approximation algo-
rithms for MAX-WIS [12, 54, 82]. Problem FF-Median, formulated as MAX-WIS,
gives rise to O(n5) vertices and O(n9) edges in graph Λ of three genomes G, H,
and I, where n = max(|G|, |H|, |I|). That is because there are O(n) adjacencies in
each extant genome, whose contained genes can participate in O(n4) candidate me-
dian adjacencies. Each of the O(n5) candidate median adjacencies can be in conflict
with O(n4) other candidate median adjacencies, contributing to a total number of
O(n9) edges in Λ. In this section, we present program FF-Median, described by Al-
gorithm 3, that exploits the specific properties of problem FF-Median, thereby using
only O(n5) variables and statements. It is an adaptation of Tannier et al.’s algorithm
described in Section 4.1.

Program FF-Median makes use of two types of binary variables a and b as de-
clared in domain specifications (D.01) and (D.02). The former variable type indi-
cates the presence or absence of candidate genes in an optimal median M. The latter,
variable type b, specifies if an adjacency between two gene extremities or telomeres
is established in M. Recall that a solution to problem FF-Median is a conflict-free me-
dian M whose cumulative adjacency score of conserved adjacencies between genes
of M and genes of extant genomes is maximized. Hence, the objective function
of program FF-Median sums over the adjacency score of conserved candidate me-
dian adjacencies multiplied by variable b. In doing so, the indicator function of
Equation (4.3) determines the multiplicity (i.e., 0, 1, 2, or 3) of conserved adjacencies
between median genes and extant counterparts. Constraint (C.01) ensures that M
is conflict-free, by demanding that each extant gene (or telomere) can be associated
with at most one median gene (or telomere). Further, constraint (C.02) dictates that
a median adjacency can only be established between genes that both are part of the
median. Lastly, constraint (C.03) guarantees that each gene extremity and telomere
of the median participates in at most one adjacency.

Just like independent sets that are solutions to MAX-WIS do not necessarily lead
to a valid genome M in the proof of Theorem 2, variable assignments returned

56

4.4. An exact solution to problem FF-Median

Algorithm 3 Program FF-Median is an ILP for finding an an optimal solution to
FF-Median (Problem 6) for 3 genomes.

Objective:

Maximize

∑
(g1 ,h1 ,i1),(g2 ,h2 ,i2)∈Σ� ,

a,b∈{h, t}

b(ga
1, gb

2, ha
1, hb

2, ia
1, ib

2)
6
√

σ(g1, h1, i1)σ(g2, h2, i2) (IG(ga
1, gb

2) + IH(ha
1, hb

2) + II(ia
1, ib

2))

Constraints:

(C.01) ∀ g′ ∈ C◦(G): ∑
(g,h,i)∈Σ�,

g=g′

a(g, h, i) ≤ 1

∀ h′ ∈ C◦(H): ∑
(g,h,i)∈Σ�,

h=h′

a(g, h, i) ≤ 1

∀ i′ ∈ C◦(I): ∑
(g,h,i)∈Σ�,

i=i′

a(g, h, i) ≤ 1

(C.02) ∀ (g1, h1, i1), (g2, h2, i2) ∈ Σ� and ∀ a, b ∈ {h, t}:
2 · b(ga

1, gb
2, ha

1, hb
2, ia

1, ib
2) ≤ a(g1, h1, i1) + a(g2, h2, i2)

(C.03) ∀ (g1, h1, i1) ∈ Σ� and ∀ a ∈ {h, t}:
∑

(g2,h2,i2)∈Σ�,
b∈{h, t}

b(ga
1, gb

2, ha
1, hb

2, ia
1, ib

2) ≤ 1

Domains:

(D.01) ∀ (g, h, i) ∈ Σ�: a(g, h, i) ∈ {0, 1}
(D.02) ∀ (g1, h1, i1), (g2, h2, i2) ∈ Σ� and ∀ a, b ∈ {h, t}:

b(ga
1, gb

2, ha
1, hb

2, ia
1, ib

2) ∈ {0, 1}

by program FF-Median result in an incomplete adjacency set A◦(M), lacking un-
conserved adjacencies. Certainly, additional variables and constraints can be intro-
duced that prohibit this shortcoming. Yet, in view of the already large number of
constraints that are imposed by program FF-Median, we propose the following
naïve post-processing scheme of its output, in order to construct a valid median M
that is a solution to problem FF-Median:

1. Create empty genome M;

57

Chapter 4. Family-free median

2. For each variable a(g, h, i) with value 1, create a unique gene m = (g, h, i); add
m to the set of genes and telomeres C◦(M);

3. For each variable b(ga
1, gb

2, ha
1, hb

2, ia
1, ib

2) with value 1, add median adjacency
{(ga

1, ha
1, ia

1), (gb
2, hb

2, ib
2)} to A◦(M)

4. Arbitrarily create adjacencies between any two gene extremities ma
1 and mb

2,
that do not participate in any adjacencies of A◦(M).

Several straightforward simplifications will greatly reduce the number of vari-
ables and constraints. First and foremost, we implement Kováč’s approach [61] of
instantiating only variables for candidate median adjacencies that are supported by
at least one extant adjacency, thereby reducing the number of variables b and their
related constraints from O(n6) to O(n5). Moreover, we omit variables b between
pairs of conflicting candidate median genes, because the representing adjacencies
can never be part of a conflict-free median. At last, we add every candidate gene
m to median M that is not conflicting with any other candidate median gene. Note
that even if gene m does not participate in any conserved adjacency, its presence
in M does not deteriorate score F�(M). Thus, we can already fix the value of its
corresponding variable a(g, h, i) to 1.

4.5 The effect of gene family evolution on family-free medians

Gene families evolve by duplication, speciation, and loss, thereby altering the order
of genes in genomes. Gene family-based approaches handle gene family evolution
either prior to gene order analysis by pruning genomes into equal gene content, or
allow duplicate genes in gene order comparisons. In case of the latter, resulting
ambiguities in the ancestral (conserved) gene order are resolved by obtaining an
optimal gene order over all possible matchings between gene duplicates. To this
end, different types of matchings are employed, such as exemplar, intermediate, or
maximum matching [6, 22].

When inferring homology assignments, family-free analysis inevitably entails the
necessity of taking the effects of gene family evolution into account. Problem FF-
Adjacencies, as described in Section 3.2, handles differences in gene content caused
by gene family evolution by facilitating the establishment of conserved adjacencies
in subgenomes. This implicates the omission of genes intermitting conserved adja-
cencies in the final matching.

Problem FF-Median can tolerate differences in gene content only to a limited
extent. A positive example is shown on the left side of Figure 4.4. It visualizes the
outcome of a duplication event of a gene belonging to gene family a, which occurred
along the evolutionary path leading to genome I after speciation from the common
ancestor of G, H, and I, i.e., median M. The true ancestral gene order “a b c” will be
recovered as long as the cumulative score of the adjacency between a and b (yellow

58

4.5. The effect of gene family evolution on family-free medians

G

H

I
a b a c d f

e

duplication deletion

Figure 4.4: The effect of duplication and deletion of a single gene in problem
FF-Median. Colored arcs correspond to potential median adjacencies.

arcs), which is conserved in all three extant genomes, plus the score of the twofold
conserved adjacency between b and c (red arcs) is larger than the cumulative score
of the onefold conserved adjacencies b, a (blue arc) and a, c (green arc) of genome I.
Note this is true in particular when genes within gene families exhibit uniform gene
similarities. Yet, in other cases, where immediate neighborhoods of true positional
homologs are less conserved, problem FF-Median likely fails to obtain the correct
ancestral gene order. Even worse, it is generally affected by gene deletion events,
such as the one shown in the example on the right side of Figure 4.4. Thereby,
similar to the previous example, the gene belonging to gene family e was lost along
the evolutionary path from median M to genome I. Since problem FF-Median
requires a 3-matching between genes of all extant genomes, the remaining gene
family members in genomes G and H can never become part of the reconstructed
median M. Whereas the inability to reconstruct the true gene content of median M
is thereby concluded, the broader gene order of genes belonging to families d and f
can still be recovered. Their common adjacency, conserved in genome I (green arc),
can be strengthened through a preprocessing method which removes genes from
gene orders of G, H, and I, that are singletons or only connected to genes belonging
to two extant genomes. In the example, such an approach would result in a threefold
conserved adjacency between gene families d and f (orange arcs). Yet, whenever the
remaining gene family members, that are homologous to the lost gene, share gene
similarities with further genes of the third genome, the preprocessing method is
doomed to failure and it becomes less likely that even the broader gene order is
recovered.

Problem FF-Median can be extended to account for gene insertions and deletions,
as well as perturbations in the assessment of gene similarities by (i) considering
conserved adjacencies in subgenomes of genomes G, H, and I, and (ii) relaxing
the 3-matching to a partial 3-matching. In doing so, the set of candidate genes of
median M is extended to include all sets of extant genes that form subcomponents

59

Chapter 4. Family-free median

G

H

I

Figure 4.5: The seven valid types of components of a partial 3-matching.

of cliques of size three in the gene similarity graph of extant genomes G, H, and
I. Figure 4.5 visualizes the seven possible subcomponents permitted by a partial 3-
matching. The resulting gene content of family-free median genomes corresponds
to genes conserved in at least two extant genomes, i.e., genes that share at least one
edge in the gene similarity graph.

However, the improved capability of resolving events of gene family evolution
comes at the expense of a dramatically increased search space of optimal family-
free medians. This makes the computation of such medians extremely challenging.
We henceforth propose an alternative, practically motivated approach, by solving
problem FF-Adjacencies for three genomes G, H, and I, and subsequently apply-
ing Tannier et al.’s algorithm [106] (Section 4.1) on its outcome to obtain a median
genome.

4.6 Solving problem FF-Adjacencies for three genomes

We now describe program FFAdj-3G, as shown in Algorithm 4. It is an adaptation
of program FFAdj-2G that was discussed in Section 3.6. Program FFAdj-3G re-
turns an exact solution to problem FF-Adjacencies for three genomes G, H, and I
(see Problem 2 in Section 3.3), given their gene similarity graph B◦ = (G, H, I, E).
To this end, the program makes use of the same three types of binary variables a, b,
and c (see domains (D.01) - (D.03)) previously described in Section 3.6.

Constraints (C.01) and (C.03) ensure that the resulting matching M forms a
valid partial 3-matching. That is, no two genes of a connected component in the
M-induced subgraph BM◦ belong to the same genome (see Definition 8). In do-
ing so, (C.01) establishes pairwise matching constraints, i.e., it guarantees that in
the matching-induced subgraph, each gene is connected to at most one gene per
genome. Note that — unlike in program FFAdj-2G — variables b are assigned 1
for each gene that is incident to at least one edge of partial 3-matching M. That is,
the value of a variable b can be 1 even though its corresponding gene is not incident
to an edge of M. But then, program FFAdj-3G permits a gene to be incident to
several edges ofM, if each of these edges is incident to genes of different genomes.
Additional constraints are enforced by (C.03) on every pair of edges that share a
common gene in one genome, but are incident to genes of different genomes. Let

60

4.6. Solving problem FF-Adjacencies for three genomes

Algorithm 4 Program FFAdj-3G is an ILP for finding an an optimal solution for
FF-Adjacencies (Problem 2) for three genomes.

Objective:

Maximize

∑
{X,Y}⊂{G,H,I}

α · ∑
{xa

1,xb
2}∈A?(X),

{ya
1,yb

2}∈A?(Y)

s(xa
1, xb

2, ya
1, yb

2) · c(xa
1, xb

2, ya
1, yb

2)+ (1− α) · ∑
x∈C◦(X),
y∈C◦(Y)

σ(x, y) · a(x, y)

Constraints:

(C.01) for all {X, Y} ⊂ {G, H, I}, for all x ∈ C◦(X),

∑
y∈C◦(Y)

a(x, y) ≤ b(x)

(C.02) for all {X, Y} ⊂ {G, H, I},
for all {xa

1, xb
2} ∈ A?(X), for all {ya

1, yb
2} ∈ A?(Y)

a(xa
1, yb

1) + a(xa
2, yb

2)− 2 · c(xa
1, xb

2, ya
1, yb

2) ≥ 0,

if {xa
1, xb

2} 6∈ A◦(X), then for all x in {x3, . . . , xn} ⊆ C(X)

such that {{xa
1, xa3

3 }, {xb3
3 , xa4

4 }, . . . , {xbn
n , xb

2}} ⊆ A◦(X),

b(x) + c(xa
1, xb

2, ya
1, yb

2) ≤ 1,

if {ya
1, yb

2} 6∈ A◦(Y), then for all y ∈ {y3, . . . , yn} ⊆ C(Y)
such that {{ya

1, ya3
3 }, {yb3

3 , ya4
4 }, . . . , {ybn

n , yb
2}} ⊆ A◦(Y),

b(y) + c(xa
1, xb

2, ya
1, yb

2) ≤ 1

(C.03) ∀ g ∈ C◦(G), ∀ h ∈ C◦(H), ∀ i ∈ C◦(I), if σ(g, h) > 0 and σ(g, i) > 0,

∑
h′∈C◦(H)

h′ 6=h

a(h′, i) + a(g, h) + a(g, i) ≤ 2, ∑
i′∈C◦(I)

i′ 6=i

a(h, i′) + a(g, h) + a(g, i) ≤ 2

if σ(g, h) > 0 and σ(h, i) > 0,

∑
g′∈C◦(G)

g′ 6=g

a(g′, i) + a(g, h) + a(h, i) ≤ 2, ∑
i′∈C◦(I)

i′ 6=i

a(g, i′) + a(g, h) + a(h, i) ≤ 2,

if σ(g, i) > 0 and σ(h, i) > 0,

∑
g′∈C◦(G)

g′ 6=g

a(g′, h) + a(g, i) + a(h, i) ≤ 2, ∑
h′∈C◦(H)

h′ 6=h

a(g, h′) + a(g, i) + a(h, i) ≤ 2

Domains:

(D.01) for all g ∈ C◦(G) and for all h ∈ C◦(H), a(g, h) ∈ {0, 1}
(D.02) for all g ∈ C◦(G), b(g) ∈ {0, 1},

for all h ∈ C◦(H), b(h) ∈ {0, 1}
(D.03) for all {ga

1, gb
2} ∈ A?(G) and for all {ha

1, hb
2} ∈ A?(H),

c(ga
1, gb

2, ha
1, hb

2) ∈ {0, 1}

61

Chapter 4. Family-free median

us consider three genes g ∈ G, h ∈ H, and i ∈ I, which are connected by two edges
{g, h}, {g, i} ∈ E. This scenario is represented in Figure 4.6, where the two edges
{g, h} and {g, i} are colored green. The figure schematizes all 16 combinations in
which edges in the neighborhood of {g, h} and {g, i} (including {g, h} and {g, i})
can participate in a matching only constrained by (C.01), where saturated edges
are indicated by thick continuous lines and unsaturated edges by dashed lines. For
instance, Figure 4.6(a) represents the case in which no edge in the neighborhood of
{g, h} and {g, i} is saturated. When applying Constraint (C.03) on the visualized
combinations, it is ensured that (i) the sum of saturated edges that are red or green
is less than or equal to two, and (ii) that the sum of saturated edges that are blue
or green is less than or equal to two. Combinations that violate any of the two sum
constraints, shown in Figures 4.6(h), 4.6(l), and 4.6(p), are exactly those that violate
the partial 3-matching property. The black line between genes h and i indicates that
edge {h, i} can be saturated or unsaturated, but is not considered by the two sum
constraints. In case edge {h, i} is saturated, conflicts with additionally saturated
blue and red edges, resulting in violations of the partial 3-matching constraint, are
already prohibited by the pairwise matching constraints of (C.01).

Lastly, Constraint (C.02) covers the rules of forming conserved adjacencies: (i) it
ensures that a variable c, which indicates a conserved adjacency for two edges, is set
to 1 only if the edges are saturated; (ii) using variables b, it prohibits that no gene
(and thus no incident edge) within a conserved adjacency is part of the matching.

Approaches presented in Section 3.7 to identify and remove suboptimal solutions
from the solution space in pairwise comparisons cannot be applied in the compar-
ison of three genomes. Consequently, it is impossible to calculate exact solutions
with program FFAdj-3G for average-sized bacterial genomes in reasonable run-
time. Hence, we suggest a heuristic variant of program FFAdj-3G, which we call
FFAdj-3G-H in the following. Given a gene similarity graph B◦ = (G, H, I, E) of
three genomes G, H, and I, FFAdj-3G-H solves problem FF-Adjacencies for all
three genomes pairs (G, H), (G, I), (H, I) exactly, using program FFAdj-2G. Then,
the heuristic integrates the resulting matchings MGH, MGI , MHI into a gene sim-
ilarity graph B′◦ = (G, H, I,MGH ∪MGI ∪MHI) ⊆ B◦. Connected components of
B′◦, that are not valid components of a partial 3-matching, are subsequently enriched
by adding incident edges of their corresponding genes in B◦. In other words, let C
be a set of genes corresponding to a component in B′◦ that is not a valid component
of a partial 3-matching, then the set of edges {{u, v} ∈ E | v ∈ C} is added to
gene similarity graph B′◦. Heuristic FFAdj-3G-H then applies program FFAdj-3G
on B′◦ to obtain a feasible (possibly suboptimal) solution to problem FF-Adjacencies
of genomes G, H, and I. Lastly, the homology assignment derived from such a so-
lution is then used as input to Tannier et al.’s maximum weighted matching-based
approach [106] (Section 4.1) to obtain a valid median genome of genomes G, H, and
I.

62

4.7. Results and discussion

g

h

i

(a)

g

h

i

(b)

g

h

i

(c)

g

h

i

(d)

g

h

i

(e)

g

h

i

(f)

g

h

i

(g)

g

h

i

(h)

g

h

i

(i)

g

h

i

(j)

g

h

i

(k)

g

h

i

(l)

g

h

i

(m)

g

h

i

(n)

g

h

i

(o)

g

h

i

(p)

Figure 4.6: The effect of Constraint (C.03) on combinations of saturated edges. Parts
(a) – (p) visualize all 16 possibilities that are valid under Constraint (C.01). The
parts show how edges incident to genes i and h are effected by the first case of
Constraint (C.03) that acts on edges {g, h} and {g, i} (green lines). Saturated
edges are indicated by thick continuous lines, unsaturated edges by dashed lines.
Continuous black lines are not considered by the constraint and can be either sat-
urated or unsaturated. Only combinations shown in Parts (h), (l), and (p) violate
constraint (C.02).

63

Chapter 4. Family-free median

threshold of 10−5 and disabled query sequence filtering and used CPLEX to solve
programs FF-Median and FFAdj-3G.

We allowed CPLEX to use up to 16 CPU cores and 16 GB of working memory. If
the computation exceeded two hours, the calculations were stopped and a best fea-
sible suboptimal solution of CPLEX’s current solution pool was reported. Note that
the computation of exact solutions to problem FF-Adjacencies for three genomes us-
ing FFAdj-3G is computationally infeasible even in small genomic datasets, hence
we did not include program FFAdj-3G in subsequent analysis.

4.7.1 Simulations

We simulated genome evolution of three genomes diverging from a common ances-
tral sequence using the simulation framework ALF [33] with the same parameters
(shown in Table 3.1) as in the simulations discussed in Section 3.9.1. Thereby, we
used the following simple phylogeny as template to generate extant sequences from
a supplied root genome:

In doing so, the genomic sequence of an E. coli K-12 strain, truncated to its first
1000 protein coding genes, was used as root genome. We then generated seven
genomic datasets, thereby stretching the (equidistant) pairwise distances between
extant genomes of the phylogeny from 10 to 130 PAM. Details about the evolution-
ary modifications in the generated datasets are shown in Table 4.1.

We subsequently calculated the statistical quantities described in Section 3.9.3 for
results obtained by programs FF-Median and FFAdj-3G-H in all seven simulated
datasets. However, this time we considered an ortholog assignment as true pos-
itive only if the two orthologous genes were positional homologs. Recall that in
a duplication event, one gene gets copied into a new location, whereas the origi-
nal copy remains unchanged. Two genes are positional homologs if both evolved
directly from a common ancestral gene and did not emerge as duplicates in any
duplication event along their connecting evolutionary paths. Identifying positional
homologs is a crucial first step in reconstructing true medians through family-free
analysis. Figures 4.7 (a) and (b) visualize precision and recall of positional ortholog
assignments in solutions of programs FF-Median and FFAdj-3G-H in the seven
simulated datasets. Due to the naturally high number of true negatives, the accuracy
of both methods in all datasets was either 1 or very close to 1.

64

4.7. Results and discussion

PAM Genome Inversions Transpositions Duplications Losses

10
G 10 8 41 30
H 8 11 33 27
I 8 13 44 38

30
G 28 19 73 102
H 25 25 59 102
I 33 34 87 72

50
G 44 56 162 128
H 47 41 128 161
I 45 44 143 115

70
G 79 85 225 181
H 74 75 223 178
I 48 76 251 185

90
G 87 79 267 321
H 85 95 278 226
I 98 99 264 254

110
G 108 124 317 356
H 110 112 335 313
I 101 109 347 360

130
G 103 144 422 376
H 131 142 417 398
I 127 135 379 396

Table 4.1: Benchmark data comprising seven genomic datasets generated by
ALF [33].

We further analyzed the performance of both programs by counting the number
of recovered adjacencies in their reconstructed medians, i.e., the number of true pos-
itive adjacencies in comparison to the root genome. The outcome of this analysis is
visualized in Figure 4.7 (c). For datasets with evolutionary distances 10 and 30 PAM,
it was impossible for program FF-Median to obtain exact solutions within two
hours of computation. In those cases we used suboptimal solutions from CPLEX’s
solution pool at the time of termination for calculating precision, recall, and number
of recovered adjacencies shown in the diagrams of Figure 4.7.

Our experiments on the seven simulated datasets reveal a superior performance of
program FFAdj-3G-H. In particular, the program outperformed program
FF-Median in the number of true adjacencies recovered by its reconstructed me-
dians. We point out again that suboptimal solutions were used in the evaluation
of datasets with pairwise distances 10 and 30 PAM, hence their results should be
treated with caution, as the true performance of program FF-Median (measured
on exact solutions) could be much better here. Nevertheless, the superior perfor-
mance of program FFAdj-3G-H — especially in datasets with medium large evolu-

65

Chapter 4. Family-free median

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PAM

p
re

c
is

io
n

FF-Median
FFAdj-3G-H α = 0.5

(a)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PAM

re
c
a

ll

FF-Median
FFAdj-3G-H α = 0.5

(b)

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

PAM

re
c
o

v
e

re
d

 a
d

ja
c
e

n
c
ie

s

FF-Median
FFAdj-3G-H α = 0.5

(c)

Figure 4.7: (a) Precision and (b) recall of positional orthologs obtained by FF-Median
and FFAdj-3G-H with α = 0.5. Part (c) visualizes number of recovered adjacen-
cies in medians obtained by the two programs in the seven simulated datasets, out
of 1000 true ancestral adjacencies. The red dashed lines indicate results obtained
from a suboptimal solution of program FF-Median.

tionary distances — can be explained by the method’s ability to tolerate events of
gene duplication and loss. Yet, this advantage diminishes in phylogenies with large
evolutionary distances, where large numbers of rearrangements and gene duplica-
tions/losses degrade the conserved gene order of extant genomes. In that case, our
experiments show that the recall rate of identifying positional homologs eventually
drops below that of program FF-Median.

4.7.2 Experiments on a biological dataset

Recently, an over 650 years old Yersinia pestis strain has been sequenced by Bos et
al. [24]. The ancient γ-proteobacterial strain, known as black death agent of the mid-

66

4.7. Results and discussion

Species/strain name Accession No. Size (bp) #Genes

Yersinia pestis CO92 AL590842.1 4,653,728 4264
Yersinia pestis KIM 10 AE009952.1 4,600,755 4090
Yersinia pestis biovar Microtus str 91001 AE017042.1 4,595,065 3944

Table 4.2: The genomic dataset of three Yersinia pestis strains used in our reconstruc-
tion of the genome order of the black death.

dle ages, is considered to be the common ancestor of previously sequenced Yersinia
pestis strains. The genome assembly of the ancient strain proposed by Bos et al. has
been refined by Rajaraman et al. [87] using additional information of the genome
structure of 11 extant Yersinia pestis and Yersinia pseudotuberculosis strains. In doing
so, Rajaraman et al. aligned the 11 extant genomes against the proposed genome se-
quence of the ancient Yersinia pestis strain, henceforth denoted as black death. Based
on the whole genome alignment, all genomes were partitioned into 9055 sequences
of non-overlapping homologous markers, occurring in one or several copies (du-
plicates) in the ancient genome sequence. These homologous markers where then
subject to a gene order study that gave rise to an improved genome assembly of the
black death.

In the following, we aim to reconstruct the sequence of protein coding genes in
the main chromosome of the black death by means of the order of protein coding
genes in the main chromosomes of three extant Yersinia pestis strains. To this end, we
will reconstruct a median genome using program FFAdj-3G-H and subsequently
compare the results to those of Rajaraman et al. [87]. We chose the genome sequences
of Yersinia pestis KIM 10, Yersinia pestis CO92, and Yersinia pestis biovar Microtus
str. 91001, whose common ancestor is the black death. An overview on the genomic
dataset is shown in Table 4.2. The phylogeny of the three Yersinia pestis strains in
context of other currently sequenced strains is depicted in Figure 4.8.

We then computed pairwise similarities between genes using RRBS, applying
the same procedure as previously used for simulated genome sequences. The me-
dian obtained by program FFAdj-3G-H corresponds to a single circular chromo-
some. All except for three adjacencies were supported by one, two, or three extant
genomes.

The dataset provided by Rajaraman et al. [87] includes a mapping between mark-
ers from the ancient genomic sequence of the black death agent and locations in
genomic sequences of extant Yersinia pestis strains. The lengths of markers range
from 110bp to nearly 5000bp, thereby most (> 80%) of the markers have lengths
smaller than 500bp. The length distribution of markers is visualized in Figure 4.9 (a).
We used the mapping of Rajaraman et al. to relate genes from genomes of Yersinia
pestis C092, Yersinia pestis KIM 10, and Yersinia pestis biovar Microtus str. 91001 to
markers. However, we found markers spreading over multiple genes as well as
genes that cover several markers, as shown by the two distributions visualized in

67

Chapter 4. Family-free median

Figure 4.8: Phylogeny of sequenced Yersinia pestis strains. The highlighted subtree
is subject of the herein described analysis (bd = black death).

Figures 4.9 (b) and (c), respectively. To complicate matters even further, in more than
750 cases markers were assigned unequal numbers of genes in extant genomes.

We subsequently assigned each marker to one or more genes, which resulted in
8532 out of 9055 markers assigned to at least one gene. We then evaluated the
gene family assignment derived from the median obtained by FFAdj-3G-H. To
this end, a marker was identified as conflicting with the gene family assignment,
if the gene families of extant genes associated with the same marker were neither
a superset nor a subset of each other. Note that this rule accounts for the over
750 cases in which markers were assigned unequal numbers of genes in extant
genomes. The analysis resulted in the detection of 67 conflicts, i.e., 67 out of 9055
markers contained misassigned gene families in the median obtained by program
FFAdj-3G-H.

We then studied the agreement of adjacencies in the median reconstructed by
program FFAdj-3G-H with adjacencies in the assembled genome of Rajaraman et
al. [87]. In doing so, we discarded 88 out of 3957 median adjacencies that either
contained misassigned gene families or were not assigned to any markers. We then
defined an adjacency of the reconstructed median to be supported by an adjacency of
markers, if either (i) its corresponding genes were assigned to the same marker or (ii)
all markers assigned to its corresponding genes were consecutive in the genome as-
sembled by Rajaraman et al.. The evaluation of 3869 adjacencies in the reconstructed
median identified 3850 supported adjacencies.

4.7.3 Discussion

In this chapter, we studied models and algorithms to construct a family-free median
from three extant genomes. We introduced problem FF-Median, which is a family-
free generalization of the well-known mixed multichromosomal breakpoint median
of three genomes. We then studied the complexity of problem FF-Median. In doing
so, we reduced instances of the weighted independent set problem to instances of
problem FF-Median, thereby proving NP-hardness of the latter. We then discussed
a 0-1 linear program for its exact solution.

68

4.7. Results and discussion

0 500 1000 1500 2000
0

2000

4000

6000

marker length

c
o

u
n

t

(a)

0 5 10 15
0

200

400

600

800

1000

markers per gene

c
o

u
n

t

(b)

1 2 3 4 5 6
0

2000

4000

6000

8000

genes per marker

c
o

u
n

t

(c)

Figure 4.9: Part (a) visualizes a histogram of the distribution of marker lengths in the
assembled genome sequence of Rajaraman et al. [87]. The diagrams to the right
show histograms of (b) markers associated to the same gene and of (c) genes
associated with the same marker, respectively.

Whereas our model of family-free adjacencies, presented in the previous chapter,
can tolerate effects of gene family evolution in the chromosomal gene order, our
family-free median model can only resolve certain cases of gene duplication. It
is generally susceptible to gene losses that occurred along the evolutionary paths
between the three extant genomes that are subject to analysis and their common
ancestor. However, there is no straightforward definition of a family-free median
model that tolerates events of gene family evolution, yet at the same time facilitates
the calculation of exact solutions within reasonable time. Therefore, we devised
with algorithm FFAdj-3G-H a heuristic approach to obtain family-free medians
that is able to tolerate the effects of gene family evolution. Our method is based on
problem FF-Adjacencies for three genomes, which was introduced in the previous
chapter. Further, algorithm FFAdj-3G-H relies on Tannier et al.’s algorithm [106] to
obtain a median gene order.

The importance of accounting for events of gene duplication and loss in family-
free analysis were shown in subsequently performed experiments on simulated
datasets: FFAdj-3G-H performed considerably better than FF-Median in identi-
fying positional orthologs and in reconstructing the true gene order of the median.

Lastly, we demonstrate the applicability of algorithm FFAdj-3G-H on biological
datasets by reconstructing the gene order of protein coding genes of the black death
from genomes of three extant Yersinia pestis strains. The four genomes are separated
by only 650 years of evolution. We compare our results to those of Rajaraman et
al. [87]. The outcome of the analysis is encouraging: The median reconstructed
by FFAdj-3G-H shows reasonable similarity to the genome structure proposed by
Rajaraman et al., although the latter used genomic markers for reconstruction, which
were directly obtained from paleogenomic sequences of the black death.

69

Chapter 4. Family-free median

70

Chapter 5
Family-free synteny

In the previous two chapters we described family-free models based on adjacencies.
An adjacency is a simple proximity relation between two genes belonging to the
same chromosomal sequence. However, gene orders become increasingly scram-
bled over longer evolutionary periods of time. When comparing two genomes that
are distantly related, gene order analysis based on identifying pairs of conserved
adjacencies may no longer be feasible. Yet, relaxed constraints of gene order conser-
vation are still able to capture weaker, but nonetheless existing remnants of common
ancestral gene order. In this chapter, we will study a relaxed proximity relation that
allows us to identify conserved regions in two genomes based on the concept of
common intervals. We present a practical approach that does not reconstruct one-to-
one orthology assignments between genes. This simplification allows us to obtain
fast, exact algorithms with polynomial running times. We subsequently evaluate
our models and algorithms on a dataset of 93 bacterial genomes and compare its
performance with that of a gene family-based method developed by Jahn [57]. The
herein presented work is published in [26] and [37].

5.1 Generalized adjacencies

In Section 3.2 we presented problem FF-Adjacencies, which does not allow genes lo-
cated in-between conserved adjacencies. We now describe a parameterized model of
generalized adjacencies that does not only tolerate orthology assignments of genes
in-between conserved adjacencies, but goes one step further, by also allowing cross-
ing pairs of “conserved adjacencies”, which we call conserved θ-adjacencies: Two gene
extremities ga

1 and gb
2 in a genome G form a θ-adjacency if at most θ − 1 genes lie

between them. Two pairs of θ-adjacencies {ga
1, gb

2} in a genome G and {ha
1, hb

2} in a
genome H form a conserved θ-adjacency if their corresponding genes are similar, i.e.,
σ(g1, h1) > 0 and σ(g2, h2) > 0. This leads to the following optimization problem:

71

Chapter 5. Family-free synteny

Problem 7 (θ-Adjacencies) Given two genomes G, H, α ∈ [0, 1], and θ ∈ N>0, find a
matching M in gene similarity graph B◦ of G and H such that the following formula is
maximized:

F θ
α (M) = α · adjθ(M) + (1− α) · edg(M) , (5.1)

where
adjθ(M) = ∑

{{g1,h1},{g2,h2}}⊆M,
{ga

1,gb
2}∈Aθ(GM),

{ha
1,hb

2}∈Aθ(HM)

s(ga
1, gb

2, ha
1, hb

2) ,

and Aθ(X) denotes the set of θ-adjacencies of genome X, for which holds that in any
adjacency {xa

1, xb
2} ∈ Aθ(X), no more than θ− 1 genes lie between x1 and x2 in genome X.

θ-Adjacencies have been described previously in literature for gene family-based
analysis [118] and are particularly useful for identifying gene clusters, which are
small sets of genes that share an associated function and therefore remain locally
preserved over longer periods of evolutionary time. Algorithm 1 can be easily
adapted to find optimal solutions for Problem 7. Nevertheless, exact approaches
become quickly computationally infeasible even for small θ. Moreover, the model
itself can be criticized for its implicit handling of gene insertions and deletions, as
well as its inability to account for unequal numbers of gene duplicates. Therefore,
we will now study a broader definition of synteny and derive a family-free model
that does not exhibit the described disadvantages of θ-adjacencies.

5.2 Synteny and gene clusters

Broader notions of conserved gene order ignore gene orientation and tolerate local
genome rearrangements. In the subsequent analysis, we make use of a genome
model in which telomeres are not modeled explicitly. Recently, Ghiurcuta and Moret
concluded in [46] the following definition of syntenic blocks, which is compatible
with many other commonly used definitions in literature. We call a set of genes
A ⊆ C(G) of genome G a block, if all genes in A are contiguously connected to each
other by adjacency set {{ga

1, gb
2} ∈ A(G) | {g1, g2} ⊆ A}:

Definition 10 (syntenic blocks [46]) Given two genomes G and H, and homology as-
signment H, two sets of genes A ⊆ C(G) and B ⊆ C(G) are called syntenic if and only if
A and B are blocks, and for each gene g ∈ A there exists a homology assignment {g, h} ∈ H
such that h ∈ B, and for each gene h′ ∈ B there exists a homology assignment {g′, h′} such
that g′ ∈ A.

We note that Ghiurcuta and Moret assume that each gene in C(G) and C(H)

has at least one homology statement in H. This condition can be established in a
straight forward manner by obtaining subgenomes G′ ⊆ G and H′ ⊆ H that only

72

5.3. Family-free syntenic blocks

contain genes with homology statements, on which the analysis of syntenic blocks
is subsequently performed.

If H is in addition a gene family assignment, the definition of syntenic blocks is
equivalent to that of common intervals in strings: Assigning a unique identifier to each
gene family, a chromosome can be represented by a string drawn from the set of
gene family identifiers. Two intervals from two strings are called common intervals
if the sets of characters of their corresponding substrings are identical [4, 35]. In
case these strings represent chromosomes, two intervals are common intervals if
and only if their corresponding gene sets are syntenic blocks.

Gene clusters are sets of genes on a chromosome that stay in close neighborhood
to each other over a longer period of evolutionary time due to mutual functional re-
lationships. Most prominent gene clusters are operons, which are gene sets that are
co-transcribed, and occur most prevalently in prokaryotes and fungi. From a theoret-
ical and technical point of view, there is little difference between detecting remnants
of ancestral gene order and identifying gene clusters. In fact, common intervals are
frequently used in comparative gene cluster studies [37, 57, 86, 99]. Moreover, many
known gene clusters that occur in multiple species are syntenic blocks according to
Definition 10. Yet, state-of-the-art gene cluster detection algorithms tolerate limited
numbers of inserted and deleted genes in blocks corresponding to gene cluster oc-
currences [23, 57, 86]. A pair of intervals in two strings, whose character sets are not
identical, yet intersect substantially, are called approximate common intervals [5, 23].
Such interval pairs are also useful in detecting true synteny, considering that Def-
inition 10 is a theoretical construct, i.e., one may have reason to claim two blocks
syntenic despite few genes exhibit no homologous counterparts within the blocks,
but to other genes outside. Furthermore, in case the homology assignment is an in-
complete gene family assignment, false negatives can give rise to synteny violations
in otherwise syntenic blocks. In the following we discuss family-free models and
algorithms to identify syntenic blocks and gene clusters based on the concepts of
common intervals and approximate common intervals.

5.3 Family-free syntenic blocks

5.3.1 A naïve approach

In [26] we suggested a naïve family-free approach based on problem FF-Adjacencies
to detect syntenic blocks for two genomes G and H. Any pair of blocks (A, B),
A ⊆ C(G) and B ⊆ C(H) can be syntenic. Therefore we build for each (A, B)
a maximum weighted bipartite matching M between the gene sets of A and B.
This is equivalent to solving problem FF-Adjacencies with α = 0 for subgenomes
corresponding to A and B.

An unmatched gene in A and B is either a duplicate occurrence if it is incident
to an unchosen edge within the interval pair, or an inserted gene, if there are no

73

Chapter 5. Family-free synteny

incident edges or all of them point to genes outside the interval pair. The obtained
matching score F0(M) needs to be corrected for the number of genes occurring in
the intervals. Otherwise, the largest score is obtained for (G, H), the interval pair
defined by the complete genomes. Simply normalizing F0(M) by the length of
A and B is also not advisable, as it causes the best-scoring syntenic blocks to be of
length one, i.e., the best-scoring pair of genes. Instead, a trade-off between matching
score and interval length needs to be defined. The corrected score can then be used
to decide whether an interval pair should pass for a conserved segment or not.

Recall that a single maximal weight matchingM can be computed in O(|A| · |B| ·√
|A|+ |B|) time [39]. However, already for two genomes there are O(|G|2 · |H|2)

interval combinations that need to be tested. One order of magnitude is saved if
neither duplicate genes nor gene insertions and deletions are allowed. In this case,
only intervals of the same size need to be paired. The maximum weight match-
ing can be accelerated by performing incremental updates of previously computed
solutions, which can be done in O(|A| · |B|) time [108]. Nevertheless, the compu-
tational complexity of this problem remains of high polynomial order, rendering it
computationally impractical.

5.3.2 A practical approach

The remainder of this chapter is largely based on [37]. In an effort to develop an
approach that can be used in practice, we propose a family-free synteny model
that avoids the costly computation of matchings. To this end, we make the bold
simplifying assumption that every non-zero similarity, be it ever so small, between
genes of two genomes can give rise to a true homology. In doing so, we reduce
the problem of family-free synteny detection to that of finding syntenic blocks as
stated in Definition 10. We construct a tentative homology assignment Hσ in which
each pair of genes with non-zero similarity corresponds to a homology relation, i.e.,
Hσ ≡ {(g, h) ∈ Σ | σ(g, h) > 0}. We call syntenic blocks obtained under homology
assignment Hσ family-free syntenic blocks.

In contrast to previously presented family-free approaches, homology assign-
ments are not explicitly determined. Yet, this model presumes there exists a true
homology assignment which renders a pair of blocks, identified through subsequent
analysis, syntenic. This, of course, is only true if the employed similarity measure
produces no or a negligible amount of false positives. Nevertheless, there are several
reasons why we believe this model is able to obtain good results in practice (and
we demonstrate this in our subsequent evaluation): first and foremost, the synteny
constraint itself acts as filter for false positives that are out of bounds of family-free
syntenic blocks; second, one can always remove weak edges in a preprocessing step
prior to a synteny analysis; lastly, we suggest a scoring scheme for family-free syn-
tenic blocks that incorporates similarities between genes. The subsequent evaluation

74

5.4. Common intervals in indeterminate strings

of our model described in Section 5.9 shows that family-free syntenic blocks with
high score are more likely to give rise to true synteny than those of low score.

Family-free syntenic blocks differ in size and, most substantially, in similarities
between genes. Therefore, we introduce a simple scoring scheme for gene sets, by
which all family-free syntenic blocks of two genomes can be ranked. The scoring
scheme takes into account the number and the similarities of the contained genes.
We define a score function µxy over a gene x in genome X and a gene set C ⊆ C(Y)
of genome Y as

µxy(x, C) =


max
y′∈C

σ(x, y′)

max
y∈C(Y)

σ(x, y)
if max

y∈C(Y)
σ(x, y) > 0

0 otherwise

so that µxy takes values between 0 and 1, being 1 if a gene with highest similarity
to i is contained in gene set C. The overall score of two gene sets (A, B), A ⊆ C(G)

and B ⊆ C(H) of genomes G and H is then

syngh((A, B)) = ∑
g∈C(A)

µgh(g, B) + ∑
h∈C(B)

µhg(h, A) . (5.2)

In Section 5.2 we mentioned that syntenic blocks are equivalent to common in-
tervals under a gene family assignment. For general homology assignments, where
transitivity is not guaranteed, syntenic blocks are equivalent to weak common intervals
in indeterminate strings, which will be discussed in detail in the subsequent section.
Indeterminate strings, also known as degenerate strings, are a class of strings that
have at every position a non-empty set of characters [51]. Assigning each homology
pair in H a unique identifier, we assume in the subsequent analysis that indeter-
minate strings drawn from the alphabet of homology pair identifiers correspond to
chromosomes.

We propose a further use case of our model: if one or several gene family predic-
tion methods return gene family assignments H1, . . . ,Hn that are in conflict with
each other, our model can be used to predict syntenic blocks in the union of all
H1 ∪ · · · ∪ Hn. The identified syntenic blocks can be subsequently used to remove
homology pairs that are not supported by synteny.

5.4 Common intervals in indeterminate strings

Common intervals were initially introduced on permutations [109] and subsequently
extended to strings [4, 35]. In the following we generalize the concept of common
intervals to indeterminate strings. Since it is applicable in a much broader context,
we will formally state and discuss common intervals in indeterminate strings by
temporarily omitting the context of family-free synteny detection.

75

Chapter 5. Family-free synteny

For an indeterminate string S with n index positions must hold that for every i,
1 ≤ i ≤ n, S[i] ⊆ Σ and S[i] 6= ∅, where S[i] denotes the character set associated
with the i-th position in S. In the special case where every position of indeterminate
string S holds a singleton set, S is equivalent to an ordinary string. We denote
the length of an indeterminate string S with n index positions by |S| ≡ n and its
cardinality, i.e., the number of all elements in S, by ‖S‖ ≡ ∑n

i=1 |S[i]|. Two positions
a and b, 1 ≤ a ≤ b ≤ |S|, induce the indeterminate substring S[a, b] ≡ S[a] S[a +
1] . . . S[b]. To distinguish intervals in different indeterminate strings, we indicate
the affiliation of an interval [i, j] to indeterminate string S by the subscript notation
[i, j]S.

Example 6 S = {a, d, g} {c} {a, d} {e, f } {b} {c, g} is an indeterminate string of length
|S| = 6 and cardinality ‖S‖ = 11 over alphabet Σ = {a, b, c, d, e, f , g}. The third element
of S is given by character set S[3] = {a, d}. Interval [2, 4] induces the substring S[2, 4] =
{c} {a, d} {e, f }.

Obviously, indeterminate strings are reduced forms of regular expressions. That is,
every indeterminate string S corresponds to a regular expression in which every set
S[i], 1 ≤ i ≤ n is represented by an alternation of its contained characters.

Example 6 (continued) Indeterminate string S = {a, d, g} {c} {a, d} {e, f } {b} {c, g}
gives rise to the regular expression (a|d|g)c(a|d)(e| f)b(c|g).

In the past years, many classic string problems have been transferred to inde-
terminate strings, such as pattern matching [52], finding repetitive structures [8],
computing the cover [7], and longest common supersequences [55, 56].

The idea behind common intervals is to compare strings, or rather substrings,
based on their character sets. The character set of an ordinary string S is defined as
C(S) ≡ {S[i] | 1 ≤ i ≤ |S|}. The equivalent concept on indeterminate strings is the
following:

Definition 11 (character set) The character set of an indeterminate string S of length n
is denoted by C(S) ≡ ⋃n

i=1 S[i].

Note that the character sets C(S) and C(T) of two indeterminate strings S and T can
be identical, yet no two positions between S and T may share the same character
set. In two ordinary strings S and T over a finite alphabet Σ, two intervals, [i, j] in S
and [k, l] in T, are called common intervals if C(S[i, j]) = C(T[k, l]). The analogon for
indeterminate strings is:

Definition 12 (strict common intervals) Given two indeterminate strings S and T, two
intervals, [i, j] in S and [k, l] in T, are strict common intervals if and only if their character
sets C(S[i, j]) and C(T[k, l]) are equal.

76

5.4. Common intervals in indeterminate strings

A weaker definition based on the intersection relation between character sets is:

Definition 13 (weak common intervals) Given two indeterminate strings S and T, two
intervals, [i, j] in S and [k, l] in T, are weak common intervals with common character
set C = C(S[i, j]) ∩ C(T[k, l]) if for each x, i ≤ x ≤ j, it holds that C ∩ S[x] 6= ∅ and for
each y, k ≤ y ≤ l, it holds that C ∩ T[y] 6= ∅.

In all our use cases, in particular for the discovery of family-free syntenic blocks,
the concept of weak common intervals appears to be more appropriate. Neverthe-
less, since the generalization of common intervals to indeterminate strings is origi-
nal, we will also outline an algorithm for the discovery of strict common intervals
in Section 5.6.

Continuing a previous line of research initially proposed by Schmidt and Stoye
in [99], we further extend strict and weak common intervals by allowing a limited
number of insertions and deletions:

Definition 14 (approximate strict common intervals) Given two indeterminate strings
S and T and a threshold δ ∈ N0, two intervals, [i, j] in S and [k, l] in T, are approximate
strict common intervals with common character set C = C(S[i, j]) ∩ C(T[k, l]) if and
only if ⋃

i≤x≤j,
S[x]⊆C

S[x] =
⋃

k≤y≤l,
T[y]⊆C

T[y] ,

and the number of positions that are not subset of C is limited by δ, i.e., |{x | i ≤ x ≤ j :
S[x] 6⊆ C}|+ |{y | k ≤ y ≤ l : T[y] 6⊆ C}| ≤ δ. These positions are called indels.

Definition 15 (approximate weak common intervals) Given two indeterminate strings
S and T and a threshold δ ∈ N0, two intervals, [i, j] in S and [k, l] in T, are approximate
weak common intervals with common character set C = C(S[i, j]) ∩ C(T[k, l]) if the
number of positions with no intersection with C is limited by δ, i.e., |{x | i ≤ x ≤ j :
S[x] ∩ C = ∅}| + |{y | k ≤ y ≤ l : T[y] ∩ C = ∅}| ≤ δ. These positions are called
indels.

Generally, algorithms for discovering common intervals of ordinary strings only
report pairs of intervals that both are maximal, i.e., cannot be extended to the left or
right without increasing their character set. The equivalent condition of maximality
in indeterminate strings is as follows:

Definition 16 (maximal) An interval [i, j] in S is called maximal if (i) i = 1 or S[i −
1] 6⊆ C(S[i, j]), and (ii) j = |S| or S[j + 1] 6⊆ C(S[i, j]).

Observe that maximality cannot be combined with the weak common intervals
property without omitting expedient interval pairs, as the subsequent example
shows:

77

Chapter 5. Family-free synteny

Example 7 Given a weak common intervals pair ([i, j]S, [k, l]T) of indeterminate strings S
and T. Let S[i − 1] be a subset of C(S[i, j]), but not intersecting with C(T[k, l]). Then
[i, j]S is not maximal according to Definition 16, yet its extended interval [i− 1, j]S is not a
common intervals pair with [k, l]T.

In terms of weak common intervals pairs, one may consider to restrict the search
space spanned over two indeterminate strings S and T to those pairs that cannot be
extended with respect to their common character set. We introduce the following
property derived from [57]:

Definition 17 (C-closed) Given an indeterminate string S, an interval [i, j], and a charac-
ter set C ⊆ Σ, interval [i, j] is C-closed if S[i], S[j]∩C 6= ∅, and if i = 1 or S[i− 1]∩C =

∅, and if j = |S| or S[j + 1] ∩ C = ∅.

However, the number of interval pairs that are closed w.r.t. their common charac-
ter set remains absurdly high even for simple structures. We give the following
example:

Example 8 Given two indeterminate strings S = {a} {b, c} {d, e} { f } and T = {c}
{a, b} {d, f } {e}. Then the following weak common intervals with interval lengths 2 or
larger are closed w.r.t. their common character set: ([1, 2]S, [1, 2]T), ([1, 3]S, [1, 3]T),
([1, 3]S, [1, 4]T), ([1, 3]S, [2, 3]T), ([1, 3]S, [2, 4]T), ([1, 4]S, [1, 3]T), ([1, 4]S, [1, 4]T),
([1, 4]S, [2, 3]T), ([1, 4]S, [2, 4]T), ([2, 3]S, [1, 3]T, ([2, 3]S, [1, 4]T), ([2, 3]S, [2, 3]T),
([2, 3]S, [2, 4]T), ([2, 4]S, [1, 3]T), ([2, 4]S, [1, 4]T), ([2, 4]S, [2, 3]T), ([2, 4]S, [2, 4]T),
([3, 4]S, [3, 4]T).

A reasonable balance between omitting dispensable and including expedient weak
common intervals is found by the subset of those that are mutually-closed, as defined
as follows:

Definition 18 (mutually-closed) Given a pair of intervals ([i, j]S, [k, l]T) of indetermi-
nate strings S and T, [i, j]S and [k, l]T are mutually-closed if [i, j]S is C(T[k, l])-closed and
[k, l]T is C(S[i, j])-closed.

The number of mutually-closed weak common intervals in our example is low as
expected:

Example 8 (continued) The mutually-closed weak common intervals of lengths 2 or larger
of indeterminate strings S = {a} {b, c} {d, e} { f } and T = {c} {a, b} {d, f } {e} are:
([1, 2]S, [1, 2]T), ([1, 4]S, [1, 4]T), ([3, 4]S, [3, 4]T).

We consequently restrict the enumeration of weak common intervals and approxi-
mate weak common intervals to those that are mutually-closed. The maximal num-
ber of mutually-closed weak common intervals of two indeterminate strings S and

78

5.5. Discovering weak common intervals

T of lengths n and m, respectively, is bounded by nm. This result follows from the
fact that the number of intervals [k, l] in T that are mutually-closed weak common
intervals with any interval of fixed left bound i in S is bounded by m. Likewise,
the maximal number of mutually-closed approximate weak common intervals of
indeterminate strings S and T is bounded by (δ + 1)2nm. Note that mutually-closed
weak common intervals are a special subclass of mutually-closed approximate weak
common intervals for δ = 0.

We now describe algorithms to compute all mutually-closed weak common inter-
vals, all maximal strict common intervals and all mutually-closed approximate weak
common intervals of two indeterminate strings S of length n and T of length m. The
efficient enumeration of approximate strict common intervals of two indeterminate
strings remains as an open problem.

5.5 Discovering weak common intervals

We now describe the algorithm Weak Common Intervals on Indeterminate Strings (WCII).
It solves the following problem:

Problem 8 Given two indeterminate strings S and T, discover all mutually-closed weak
common intervals of S and T.

To tackle this problem we make use of the following constructs:

Definition 19 (index string) Given an indeterminate string S of length n, IS ≡ {1}
{2} · · · {n} denotes the index string of S.

Definition 20 (index mapping) Given two indeterminate strings S and T of lengths n
and m respectively, the index mapping of S onto T is given by (TS[y])y=1,...,m, where

TS[y] =
{ {x | x = 1, . . . , n : S[x] ∩ T[y] 6= ∅} if T[y] ∩ C(S) 6= ∅
{∞} otherwise.

Example 9 Figure 5.1(a) visualizes the intersection of character sets of positions between in-
determinate strings S = {g} {b, p} {x} {n, p} {d, o, s} {a, z} {e, n, w} { f } {l, v} {h, u, z}
{j, r} {k} {m, q, y} and T = {d} {g, b} {a} {p, s} {n} {a, b} { f , m, w} {e, w} {i} {q, y}
{h} {c, r} {z}. Their corresponding index string IS and index mapping TS are shown in
Figure 5.1 (b).

Note that index strings and index mappings are again indeterminate strings, with
indices representing characters drawn from the alphabet of natural numbers. The
key idea of WCII arises from the following observation:

Observation 1 Given two indeterminate strings S and T with index string IS and index
mapping TS, two intervals [i, j] in S and [k, l] in T are weak common intervals if and only
if [i, j]IS and [k, l]TS are weak common intervals.

79

Chapter 5. Family-free synteny

S g b
p

x n
p

d
o
s

a
z

e
n
w

f v
l

h
u
z

j
r

k m
q
y

T d g
b

a p
s

n a
b

f
m
w

e
w

i q
y

h c
r

z

(a)

IS 1 2 3 4 5 6 7 8 9 10 11 12 13

TS 5 1
2

6 2
4
5

4
7

2
6

7
8

13

7 ∞ 13 10
11

11 6
10

(b)

Figure 5.1: (a) Visualization of indeterminate strings S and T of Example 9 and (b)
their corresponding index string IS and index mapping TS.

This equivalence holds because any two positions, x in S and y in T, intersect
if and only if IS[x] and TS[y] intersect. Since it holds that IS[x] = {x} for all x =

1, . . . , n, we simplify the notation of single character set IS[x] to just x and character
set C(IS[i, j]) to just [i, j]. Note that character c ∈ C(IS[i, j]) ⊆ {1, . . . , n} serves
subsequently both as character c ∈ [i, j] as well as index in IS.

WCII is an adaptation of Didier’s Algorithm [35] of enumerating maximal com-
mon intervals in ordinary strings. Didier’s strategy can be described as follows: The
algorithm iterates over all positions i in IS as possible left interval bounds. In each
iteration all mutually-closed weak common interval pairs are reported that share
the same left bound i in IS. For each possible right bound j ≥ i, the algorithm
iterates through the set of positions in TS that contain j in their character set. To
this end, a table Pos is used, where Pos[j], 1 ≤ j ≤ n, is a sorted list of positions
in TS containing character j. Each position y ∈ Pos[j] is associated with an interval
[k, l]TS , k ≤ y ≤ l, called the min-rank interval of character j for position y. It is the
largest interval around y for which every position in [k, l]TS contains at least one
character in [i, j]. Obviously, [k, l]TS is [i, j]-closed. It remains to be tested if [i, j]IS is
closed w.r.t. C(TS[k, l]) and that every position in [i, j]IS and [k, l]TS contains a charac-
ter from C = C(IS[i, j]) ∩ C(TS[k, l]). To show the latter, it is sufficient to show that
[i, j] ⊆ C(TS[k, l]), because the character set of each position in IS corresponds to the
single element set of its index. The details of both tests are explained after relevant
data structures are introduced. If both conditions are satisfied, a mutually-closed
weak common intervals pair is found and subsequently reported.

80

5.5. Discovering weak common intervals

We follow two strategies of Didier’s Algorithm, that improve the performance:
precomputing min-rank intervals and following paths of rank-nearest successors.

In order to identify min-rank intervals, it is sufficient to observe the smallest
character c ≥ i in each position of TS. To this end, we make use of the following
construct:

Definition 21 (i-reduced string) Given index mapping TS, (Ti
S[y])y=1,...,m is the

i-reduced string of TS of the ith iteration, where Ti
S[y] = min({c | c ∈ TS[y] ∪ {∞} :

c ≥ i}).

Min-rank intervals in Ti
S are identical to rank intervals as initially defined by Di-

dier et al. [35]. Interestingly, rank intervals in Ti
S correspond directly to min-rank

intervals in TS:

Lemma 8 The set of min-rank intervals in TS is identical to the set of rank intervals in Ti
S.

Proof: Didier et al. [35] show that rank intervals in a string are nested and that
their number is bounded by the length of the string.

Observe that for any position y in Ti
S the rank interval of character j = Ti

S[y] is
identical to the min-rank interval of j at position y in TS. Let y be a position in
TS and j ∈ TS[y] such that j > Ti

S[y]. Further, let [k, l]TS be the min-rank interval
of j at TS[y], j′ = max({c | c ∈ C(Ti

S[k, l]) : c ≤ j}), and [k′, l′]TS be the min-rank
interval of j′ at its corresponding position in TS. Because j′ ≤ j, it consequently
holds that [k′, l′]TS ⊆ [k, l]TS . Now, according to the definition of min-rank intervals,
Ti

S[k
′− 1] > j′, if such position exists. Since j′ is the largest character in Ti

S[k, l] that is
smaller than or equal to j, it must also hold that Ti

S[k
′ − 1] > j. The same argument

holds for Ti
S[l
′+ 1] if such position exists, therefore [k, l]TS = [k′, l′]TS is the min-rank

interval of both characters j′ and j. We conclude that all min-rank intervals for any
character in TS at iteration i are contained in the set of rank intervals of Ti

S. �

Consequently, all min-rank intervals in TS in the ith iteration (i.e., for a fixed
left bound i in IS) can be precomputed in O(m) time using the algorithm given by
Didier et al. [35]. They are stored in table Int. For a currently processed character j at
position y in TS, Int[y] contains its corresponding min-rank interval. Unlike Didier’s
Algorithm, Int must be updated after each iteration such that all positions in Int

accessed in the following (j + 1)th iteration contain the corresponding min-rank
intervals of character j + 1. Details of the update step can be found in Section 5.5.1.

The second strategy of Didier’s Algorithm for speeding up the computation is to
continuously increase the right bound j in IS while walking through positions and
characters of TS. In doing so, the algorithm jumps from a current position y that
contains character j to its rank-nearest successor, which is the position y′ containing
character j + 1 with the smallest min-rank distance to y as defined as follows:

81

Chapter 5. Family-free synteny

IS 1 2 3 4 5 6 7 8 9 10 11 12 13

TS 5 1
2

6 2
4
5

4
7

2
6

7
8

13

7 ∞ 13 10
11

11 6
10

Figure 5.2: Visualization of all min-rank intervals and an exemplary path of rank-
nearest successors for iteration i = 4 of Algorithm WCII applied on indeterminate
strings of Example 9. On this path of rank-nearest successors, the algorithm finds
mutually-closed weak common intervals pairs ([4, 5]S, [4, 5]T) and ([4, 8]S, [3, 8]T),
which are highlighted in orange color.

Definition 22 (min-rank distance) The min-rank distance of any two positions k and l
in indeterminate string TS for the ith iteration is given by:

di
TS
(k, l) ≡ max({Ti

S[p] | k ≤ p ≤ l}) .

If several co-optimal positions are available, the tie is broken by choosing the
leftmost one as rank-nearest successor. In case no position with character j + 1
exists, or the smallest min-rank distance is infinite, j has no successor. For the
ith iteration, all rank-nearest successors are precomputed and stored in table Succ,
which is explained in more detail in Section 5.5.2.

Example 9 (continued) Figure 5.2 visualizes for iteration i = 4 all min-rank intervals of
TS and one exemplary path of rank-nearest successors that leads to mutually-closed weak
common intervals pairs ([4, 5]S, [4, 5]T) and ([4, 8]S, [3, 8]T).

We now give an overview of Algorithm 5. To this end, apprehend that connecting
characters larger than or equal to i at their corresponding positions in TS with their
rank-nearest successors through directed edges results in a forest of rooted trees.
Nodes (across all trees) sharing the same character are said to reside on the same
level. In lines 8-28 of Algorithm 5, the algorithm traverses along paths through this
forest in a bottom-up procedure, from one level to the next, starting at those leaves
with character i. Besides the currently visited nodes of the level, the algorithm keeps
track of the path bounds, which are the outermost positions in TS a path has visited
thus far. The currently visited nodes of the paths and their corresponding path
bounds are stored in a list labeled List. Only after all nodes of the same level j are
processed, the algorithm follows all current paths to nodes of the next level j + 1,
thereby ensuring that each character in TS is processed at most once. To this end, for

82

5.5. Discovering weak common intervals

Algorithm 5 Algorithm WCII adapts the search strategy of Didier’s Algorithm [35]
for common intervals in strings to the computation of weak common intervals in
indeterminate strings.
Input: Two indeterminate strings S and T
Output: All mutually-closed weak common intervals of S and T

1: Construct index mapping TS and table Pos

2: for i← 1 to |S| do
// initialize List with positions in TS that contain character i

3: Initialize empty list List

4: for each element y in Pos[i] do
// tuple storing current position y in path of rank-nearest successors, and current path bounds

5: add (y, [y, y]) to List

6: end for
// main loop

7: j← i
8: while List is not empty do
9: previous← [∞, ∞]

10: Initialize empty list List
′

11: for each element (y, [pk, pl]) in List do
12: [k, l]← min-rank interval of character j around position y in TS.
13: if i− 1 6∈ C(TS[k, l]) then

// test if there are interval pairs to output
14: y′ ← rank-nearest successor of y if such exists, otherwise ∞
15: if [pk, pl] ⊆ [k, l] and [k, l] 6= previous and y′ 6∈ [k, l] then
16: output ([i, j], [k, l])
17: previous← [k, l]
18: end if

// compute the next level
19: if y′ 6= ∞ and y is the leftmost index with shortest min-rank distance to y′ among

positions of the list having the same rank-nearest successor y′ then
// update path bounds

20: p′k ← min(pk, y′)
21: p′l ← max(pl , y′)
22: add (y′, [p′k, p′l]) to List

′

23: end if
24: end if
25: end for
26: List← List

′

// Increase right bound j
27: j← j + 1
28: end while
29: end for

all positions containing character j that have the same rank-nearest successor y′, the
algorithm discontinues the paths of all but the leftmost one with shortest min-rank
distance to y′ (line 19). Traversing along paths of rank-nearest successors in WCII
differs from Didier’s Algorithm by the fact that a position in TS may be visited by
the same path several times on different levels.

83

Chapter 5. Family-free synteny

For any given min-rank interval [k, l]TS there cannot be more than one weak com-
mon intervals partner in IS starting at position i. Therefore it is sufficient to track at
least one path in each min-rank interval to find all mutually-maximal intervals of IS
and TS. Positions in Pos are sorted, thus paths leading to the same weak common
intervals pair appear adjacent to each other in List and the pair is reported only for
the first (lines 15-17).

For each node in List, associated with character j and position y, the algorithm
checks if the min-rank interval [k, l]TS of j encloses the path bounds up to position y
(see condition in line 15). If validated, a weak common intervals pair has been found,
given by ([i, j]IS , [k, l]TS). To ensure mutual closedness, the pair is only reported if
i − 1 is not contained in the character set C(TS[k, l]) and the successor of y is not
within the current bounds of its path (see conditions in lines 13 and 15). Checking
for the former can be achieved in O(1) time after O(m) time preprocessing by
performing a range minimum query on an array of size O(m) where each position
containing character i− 1 is assigned 0 and 1 otherwise.

The overall complexity of the algorithm can be summarized as follows: Table Pos

can be constructed within O(‖TS‖) time and requires O(‖TS‖) space. Each position
in IS is regarded exactly once as left bound i for all weak common intervals that
are reported in one iteration. Once Ti

S is computed for i = 1 it can be updated
using table Pos, taking overall O(‖TS‖) time for all left bounds i = 1, . . . , n. Further,
for each left bound the algorithm performs O(m) steps to precompute all min-rank
intervals and O(‖TS‖) steps to precompute all rank-nearest successors. The subse-
quent bottom-up procedure and the reporting of weak common intervals requires
again O(‖TS‖) time. Therefore we have:

Theorem 3 Given two indeterminate strings S and T, Algorithm WCII finds all pairs of
mutually-closed weak common intervals of S and T in O(|S| · ‖TS‖) time.

The following two subsections describe the prodedures of updating table Int and
computing table Succ in detail.

5.5.1 Updating table INT

Didier et al. [35] give a linear time algorithm to identify all rank intervals in a string,
that we use to precompute all (min-) rank intervals for characters in Ti

S. Their
bounds are stored in table Int such that entry Int[y] stores the bounds of the min-
rank interval for character Ti

S[y]. Table Int must be updated when proceeding from
one level to the next, so that Int[y], always points to the min-rank interval of the
currently processed character in TS[y].

Algorithm 6 updates table Int for the next level. In the first part of the algorithm
the min-rank interval of each position y containing the currently processed charac-
ter j is copied to the position of its rank-nearest successor y′ if such exists and if

84

5.5. Discovering weak common intervals

Algorithm 6 Update algorithm for table Int

Input: Tables Int, Pos, and Succ, min-rank string Ti
S, and current level j

Output: Table Int for level j + 1

// push rank intervals of j to successor positions
1: for each element y in Pos[j] do
2: y′ ← rank-nearest successor of y if exists, otherwise ∞
3: if y′ 6= ∞ and Int[y′] ⊂ Int[y] then
4: Int[y′]← Int[y]
5: end if
6: end for

// Update rank intervals in the neighborhood of positions y for which Ti
S[y] = j + 1

7: Initialize empty queue Queue

8: Previous← −∞
9: for each element y in Pos[j + 1] do

10: if Ti
S[y] 6= j + 1 then

11: if Previous 6= −∞ and di
TS
(y, Previous) ≤ j + 1 then

12: Int[y]← Int[Previous]
13: else
14: Push y onto Queue

15: end if
16: else
17: while Queue is not empty do
18: Pop y′ from Queue

19: if di
TS
(y, y′) ≤ j + 1 then

20: Int[y′]← Int[y]
21: end if
22: end while
23: Previous← y
24: end if
25: end for

Int[y′] ⊂ Int[y]. Now, in the proof of Lemma 8 we showed that for any character j
at any position y in TS for which Ti

S[y] 6= j, there exists some j′ ≤ j at some position
y′ such that Ti

S[y
′] = j′ and the min-rank intervals of j and j′ are identical. Let us for

now assume that j′ < j. Then j′ is visited prior to j, therefore the min-rank interval
of j′ is passed from j′ to a position containing j′ + 1, to j′ + 2, etc., eventually reach-
ing character j on position y. Note that such a path must exist if ([i, j]IS , [k, l]TS) are
weak common intervals.

The case where j′ = j is treated in lines 7 onwards. To this end we iterate once
through all positions Pos[j + 1] of the character j + 1 that will be processed next.
Whenever the algorithm finds a position y such that Ti

S[y] = j + 1, previous and
subsequent positions in Pos[j+ 1] that reside in the corresponding min-rank interval
are updated to Int[y].

85

Chapter 5. Family-free synteny

5.5.2 Computing table SUCC

In order to identify weak common intervals pair ([i, j]IS , [k, l]TS), the algorithm fol-
lows a path of rank-nearest successors from i to j within the bounds of min-rank
interval [k, l]TS of character j at a position y, k ≤ y ≤ l. By doing so, the algorithm
avoids the costly computation of determining the character set in an interval, which
would be otherwise necessary in verifying that all characters in i, . . . , j are contained
in a min-rank interval [k, l]TS .

We can adopt Remark 3 from Didier et al. [35]:

Observation 2 For each min-rank interval [k, l]TS holds that the min-rank distance of any
two positions inside the interval is strictly smaller than any min-rank distance of a position
inside [k, l]TS to a position outside the interval.

Observation 2 ensures us that a path of rank-nearest successors from i to j along
positions in TS will always stay within bounds of min-rank interval [k, l]TS of j for
position y as long as ([i, j]IS , [k, l]TS) are weak common intervals.

Let DTS be the table that stores indeterminate string TS. In each iteration, the rank-
nearest successors of all characters in TS are precomputed and stored in a table Succ,
which is an analogous table to DTS . That is, the rank-nearest successor of character
c at position y in TS is stored at the same index position in Succ as character c in
DTS . Thus, the size of Succ is O(‖TS‖).

Since Succ is traversed parallel to DTS , the look-up of the rank-nearest successor
of a character c at position y in TS can be performed in O(1) time if one keeps track
of the index position of c.

Constructing Succ is achieved by sweeping through DTS once from left to right
and once from right to left. Thereby most recent positions of observed characters
i, . . . , n are tracked in a table Occ. Let p be the index position of a character c ≥ i at
a position y in DTS , Succ[p] is set to Occ[c + 1] if

1. character c + 1 has been observed in a previous position (including y) and

2. Succ[p] is either undefined or di
TS
(y, Occ[c + 1]) < di

TS
(y, Succ[p]) or

di
TS
(y, Occ[c + 1]) = di

TS
(y, Succ[p]) and Occ[c + 1] < Succ[p].

Min-rank distances can be computed in O(1) time after O(m) preprocessing by
performing range maximum queries on Ti

S [13].

5.6 Discovering strict common intervals

In this section we aim to solve the following problem:

Problem 9 Given indeterminate strings S and T, discover all maximal strict common in-
tervals of S and T.

86

5.6. Discovering strict common intervals

Similar to Algorithm WCII, the herein proposed algorithm is an adaptation of
Didier’s Algorithm [35]. Unlike the approach discussed in the previous section,
for strict common intervals it is no longer sufficient to determine whether or not
two positions of indeterminate strings S and T intersect. Instead, one must know
the exact character set of the intersection, because every character of an interval of
S must be contained in an interval of T in order to render both a strict common
intervals pair. Henceforth, the algorithm operates not on index string IS and index
mapping TS, but directly on indeterminate strings S and T.

An indeterminate string X gives rise to a family of ordinary strings of the form
X = X1X2 · · ·X|X|, where each Xi, 1 ≤ i ≤ |X|, is a concatenation of the elements
of X[i] in arbitrary order. We call this family the flat strings of X. For our purpose it
is sufficient to consider just one arbitrarily selected representative of them, denoted
as X in the following. Note that one cannot naïvely run Didier’s Algorithm on flat
strings of S and T to obtain all maximal strict common intervals of S and T, because
the method fails to find correct rank-nearest successors, resulting in paths that ex-
ceed the bounds of corresponding intervals in indeterminate string T as shown by
this example:

Example 10 Given two indeterminate strings S = {1, 2} {3, 4} {5, 6} and T = {5, 2}
{1, 3} {2, 4} {6} and a maximal strict common intervals pair ([1, 2]S, [2, 3]T). For the
sake of simplicity, let each character correspond to its actual rank. Consider the flat string
T = 5 2 1 3 2 4 6 of T. Candidates for the rank-nearest successor of character 1 at the 3rd
position in T are positions 2 and 5, both accommodating character 2. The rank-nearest
successor under rank distance (as defined in [35]) among the two is position 2 with rank
distance 2, while position 5 has rank distance 3. Yet, position 2 in T corresponds to position
1 in T, which is outside of the interval [2, 3]T corresponding to the strict common intervals
pair.

Following Didier et al. [35], we define by RankX the character ranking table w.r.t. a
given ordinary string X: For each character c ∈ Σ,

RankX[c] = min
1≤i≤|X|,

c=X[i]

|C(X[1, i])|

denotes its rank, i.e., the number of distinct characters up to, and including, the first
occurrence of c in string X if such exists, or ‘∞’ otherwise. If it is clear for which
string X table RankX is computed, we denote it simply by Rank.

In the ith iteration, the algorithm computes for each fixed left bound i in indeter-
minate string S table Rank of flat string S[i, n]. Choosing any representative of the
flat string family of S[i, n] results in an arbitrary assignment of ranks in character
sets of positions in S[i, n] that have more than one character. We will see that the
choice of the flat string representative neither confines the correctness, nor affects

87

Chapter 5. Family-free synteny

the runtime of our proposed algorithm, since every character in a character set must
be “seen” by the algorithm, independent of the order determined by their ranks.

Similar to Didier et al.’s approach, our adaptation follows for each iteration i the
paths of rank-nearest successors through indeterminate string T, starting at posi-
tions that contain the character corresponding to rank 1. Hereby the rank-nearest
successor is determined w.r.t. the following distance:

Definition 23 (max-rank distance) Given rank table Rank, the max-rank distance of
any two positions k and l in indeterminate string T for the ith iteration is given by:

di
↑(k, l) ≡ max{Rank[c] | c ∈ C(T[k, l])} .

For each position y in T along the path of rank-nearest successors, we identify
the largest interval k ≤ y ≤ l around y for which holds that C(T[k, l]) contains no
character of higher rank than the current. We denote these intervals max-rank inter-
vals. If T[y] itself contains characters of higher rank, the max-rank interval remains
undefined. If however the max-rank interval is defined, the algorithm tests if it com-
pletely surrounds the path of rank-nearest successors. In case the current rank is
the highest rank in the character set of its corresponding position j in indeterminate
string S, a pair of strict common intervals ([i, j]S, [k, l]T) is found. Whereas max-
rank interval [k, l]T is maximal by definition, it remains to be tested if interval [i, j]S
is maximal, too. To this end, the algorithm checks if both character sets of positions
S[i − 1] and S[j + 1] (if such exist) contain a character with higher rank than the
current. If true, [i, j]S is maximal and the interval pair ([i, j]S, [k, l]T) is reported.

Analogous to the approach in the previous section, max-rank intervals are pre-
computed and stored in table Int. However, unlike for min-rank intervals, for each
position y in T there exists exactly one max-rank interval that is a valid candidate to
participate in a pair of strict common intervals. Thus, once table Int is computed, it
does not need to be updated within the ith iteration. We use Didier et al.’s original
approach for computing rank intervals by applying it on the max-rank string Ti

↑ of T,
as defined as follows:

Definition 24 (max-rank string) Given indeterminate string X and table Rank,
(Xi
↑[p])p=1,...,|X| is the max-rank string of X for the ith iteration, where Xi

↑[p] =

argmaxc∈X[p] Rank[c].

The rank interval of a position y in Ti
↑ is identical to the only well-defined max-

rank interval of T[y]. Lastly, rank-nearest successors can be precomputed and stored
in table Succ similar to the approach described in Section 5.5.2.

For each of the n positions in S, our adaptation of Didier’s algorithm uses O(‖T‖)
time to compute tables Rank and Succ, and O(m) time to compute Int, consuming
O(‖T‖) space. Traversing through paths of rank-nearest successors in Succ requires
O(‖T‖) time, since every entry in table Succ is looked up a constant number of

88

5.7. Discovering approximate weak common intervals

Algorithm 7 Algorithm AWCII is a search algorithm for approximate weak common
intervals in indeterminate strings. It is an adaptation of RGC [57], an algorithm for
computing approximate common intervals in strings.
Input: Indeterminate strings S, T, indel threshold δ.
Output: All mutually-closed approximate weak common intervals of S and T with at most δ indels

1: Construct index mapping TS and table Pos

2: for i← 1 to |S| do
3: for j← i to |S| do
4: Previous← −∞
5: for each element y in Pos[j] do
6: dk ← δ

7: while dk ≥ 0 do
8: k← leftmost position in TS s.t. |{p | k ≤ p ≤ y : TS[p] ∩ [i, j] = ∅}| ≤ dk

// d′k corresponds to the observed number of indels in [k, y]TS

9: d′k ← |{p | k ≤ p ≤ y : TS[p] ∩ [i, j] = ∅}|
10: if Previous ≥ k then
11: break
12: end if
13: dl ← δ− dk
14: while dl ≥ 0 do
15: l ← rightmost position in TS s.t. |{p | y ≤ p ≤ l : TS[y] ∩ [i, j] = ∅}| ≤ dl
16: dS ← j− i− |C(TS[k, l]) ∩ [i, j]|+ 1
17: if dS + dk + dl ≤ δ and {i− 1, j + 1} ∩ C(TS[k, l]) = ∅ and i ∈ C(TS[k, l]) then
18: output ([i, j], [k, l])
19: end if
20: dl ← |{p | y ≤ p ≤ l : TS[y] ∩ [i, j] = ∅}| − 1
21: end while
22: dk ← d′k − 1
23: end while
24: Previous← y
25: end for
26: end for
27: end for

times. Testing interval bounds in Int takes constant time. The maximality test
for interval [i, j]S can also be achieved in constant time if at the beginning of the
ith iteration the max-rank string of S[max(1, i − 1), n] is determined, which takes
O(‖S‖) time and O(n) space. We conclude with the following theorem:

Theorem 4 Given two indeterminate strings S and T, all pairs of maximal strict common
intervals of S and T are computable in O(|S| · (‖S‖ + ‖T‖)) time and O(‖S‖ + ‖T‖)
space.

5.7 Discovering approximate weak common intervals

89

Chapter 5. Family-free synteny

We now present the algorithm Approximate Weak Common Intervals on Indeterminate
Strings (AWCII) as presented in Algorithm 7, thus line numbers mentioned in this
subsection refer to Algorithm 7. AWCII solves the following problem:

Problem 10 Given two indeterminate strings S and T and indel threshold δ ∈N0, discover
all mutually-closed approximate weak common intervals of S and T with no more than δ

indels.

Following a strategy similar to WCII, AWCII solves Problem 10 for index map-
pings IS and TS, instead of S and T. As before, in each iteration the algorithm
maintains a fixed left bound i in IS. For each character j ∈ [i, n] all positions y in
TS are processed that contain character j (lines 5-25). Thereby character j at position
y in TS can be associated with several different intervals around y that are candi-
dates of mutually-closed approximate weak common interval partners for interval
[i, j]IS . Only intervals surrounding one (or several) positions y can be mutually-
closed. However, for an interval [k, l]TS containing indels, it no longer holds that the
min-rank distance of any two positions within the interval is always smaller than
the min-rank distance from any position inside to any position outside the interval.
As a result, neither precomputed min-rank intervals nor following paths of rank-
nearest successors can be used for improving the algorithm’s performance. Instead
we pursue a different approach, thereby making AWCII an adaptation of the RGC
algorithm of Jahn [57].

For each dk = 1, . . . , δ (lines 7-23) AWCII identifies the leftmost position k in TS
such that at most dk indels are contained in interval [k, y]TS and TS[k] ∩ [i, j] 6= ∅.
Let d′k ≤ dk be the observed number of indels in [k, l]TS (see line 9), the algorithm
then finds for each dl = 1, . . . , δ− d′k (lines 14-21) the rightmost position l such that
again TS[l] ∩ [i, j] 6= ∅ and the number of indels in [y, l]TS does not exceed dl . Each
(k, l) of the at most (δ + 1)2 combinations of leftmost and rightmost positions gives
rise to a candidate pair of mutually-closed approximate weak common intervals
([i, j]IS , [k, l]TS). For each candidate pair it is checked that the number of characters
in [i, j] not contained in C(TS[k, l]) plus the already consumed number of indels
in [k, l]TS does not exceed δ. Finally, it is tested if [i, j]IS is C(TS[k, l])-closed. If both
conditions are satisfied, a mutually-closed approximate weak common intervals pair
is found and is subsequently reported (line 18).

Runtime improvements are achieved by precomputing right and left bounds of
candidate intervals [k, l]TS for each character j in TS. These bounds are computed
within O((δ+ 1)‖TS‖) time for a fixed left bound i in IS and stored in tables L and R
respectively. Further, for each such candidate interval [k, l]TS the number of charac-
ters that are within [i, j] can also be precomputed. This number is used to determine
δS in line 16. The construction of the corresponding table, called RangeContent, is
achieved within O((δ + 1)2n‖TS‖) time for a fixed left bound i. Note that Range-
Content differs significantly from the data structure Num used in RGC [57] to
count characters in intervals.

90

5.7. Discovering approximate weak common intervals

The first speedup in the algorithm is accomplished by precomputing left and right
bounds of all candidate intervals in TS of the ith iteration, which are subsequently
stored in tables L and R. To this end, we sweep for each j ∈ [i, n] through all
characters in TS from one side to the other. Specifically, when sweeping from left
to right, table R is constructed, table L in reverse direction. During each sweep we
keep track of up to δ + 1 outermost positions in TS that contain any character in [i, j]
and are not more than 0, 1, . . . δ indels away from the current position. Whenever we
come across character j at any position y, all tracked outermost positions and their
corresponding number of indels are stored in L, respectively R. Precomputation of L
and R in the ith iteration takesO((δ+ 1) · n‖TS‖) time and requiresO((δ+ 1) · ‖TS‖)
space.

The next improvement in performance of the algorithm is achieved by precom-
puting table RangeContent, which stores for each candidate interval [k, l]TS corre-
sponding to character j its character content shared with [i, j]IS , i.e., C = C(TS[k, l])∩
[i, j]. The size of C is required in line 16 in Algorithm AWCII to compute δS. Con-
sequently we store for each interval corresponding to character j at position y in
TS and defined by bounds in L and R, the number of characters that are within
[i, j]. In other words, RangeContent stores at most (δ + 1)2 entries associated with
candidate intervals of character j at position y in TS.

Computing RangeContent can be achieved by sweeping for each j ∈ [i, n] once
from left to right and once from right to left through all characters in TS. At first, ta-
ble RangeContent is initialized with zeros. Every entry in RangeContent serves
as counter for the number of characters that are within [i, j] of a candidate interval
in TS. In each sweep we keep track of the most recent position pj in which character
j has been observed. We process every character c of each position in TS for which
i ≤ c ≤ j. Going through all combinations (k, l) of interval bounds in L and R for
character c, we increase the counter of [k, l]TS as long as pj ∈ [k, l]TS and the counter
has not yet been increased for character j. The latter condition prevents that a char-
acter is counted twice, once during a sweep from left to right and then again when
sweeping from right to left.

In terms of overall runtime, for each fixed bound i in IS the algorithm spends
O((δ + 1)2n‖TS‖) time on computation of the above mentioned auxiliary tables.
Thereafter, AWCII requires O((δ + 1)2‖TS‖) time to iterate through all combina-
tions of candidate intervals in L and R and to identify approximate weak common
intervals.

Testing for C(TS[k, l])-closedness of interval [i, j]IS can be achieved in O(1) time
by precomputing a table for all candidate intervals in TS of the ith iteration, where
each entry indicates if a character i − 1 or j + 1 is contained in the corresponding
candidate interval. Such a table can be constructed within O((δ + 1) · ‖TS‖) time
using a simple sweep algorithm. We conclude with the following theorem:

91

Chapter 5. Family-free synteny

Algorithm 8 Algorithm ACSI is a runtime heuristic that computes all approximate
weak common intervals in indeterminate strings.
Input: Indeterminate strings S, T, indel threshold δ.
Output: All mutually-closed approximate weak common intervals of S and T with at most δ indels

1: Construct index mapping TS and table Pos

2: for i← 1 to |S| do
3: for each element y in Pos[i] do
4: for j← i to |S| do
5: EXTEND(i, j, y, y, δ)
6: end for
7: end for
8: end for

9: procedure EXTEND(i, j, k, l, d)
10: Increase interval [k, l]TS to both sides until [i, j] ∩ TS[k− 1] = [i, j] ∩ TS[l + 1] = ∅
11: if i− 1 ∈ C(TS[k, l]) or j + 1 ∈ C(TS[k, l]) then
12: return
13: end if

// test if there are interval pairs to output
14: if j− i + 1− |C(TS[k, l]) ∩ [i, j])| ≤ d and i ∈ C(TS[k, l]) then
15: output ([i, j]S, [k, l]T)
16: end if

// extend to both directions until all indels d are consumed
17: k′ ← highest index strictly smaller than k− 1 such that C(TS[k′, k− 1]) ∩ [i, j] 6= ∅
18: if k− k′ − 1 ≤ d and {i− 1, j + 1} ∩ C(TS[k′, k− 1]) = ∅ then
19: EXTEND(i, j, k′, l, d + k′ + 1− k)
20: end if
21: l′ ← lowest index strictly larger than l + 1 such that C(TS[l + 1, l′]) ∩ [i, j] 6= ∅
22: if l′ − l − 1 ≤ d and {i− 1, j + 1} ∩ C(TS[l + 1, l′]) = ∅ then
23: EXTEND(i, j, k, l′, d + l + 1− l′)
24: end if
25: end procedure

Theorem 5 Given two indeterminate strings S and T and indel threshold δ ∈ N0, algo-
rithm AWCII computes all pairs of mutually-closed approximate weak common intervals of
S and T in O((δ + 1)2 · |S|2‖TS‖) time.

5.8 A runtime heuristic for discovering approximate weak common
intervals

Algorithm ACSI (see Algorithm 8) represents a runtime heuristic that solves Prob-
lem 10 exactly and in practice outperforms both AWCII and, when δ = 0, even WCII
for the non-approximate problem variant (Problem 8) by orders of magnitude.

Just as algorithm WCII and AWCII, ACSI operates on index string IS and in-
dex mapping TS instead of indeterminate strings S and T directly. For every fixed
interval [i, j] in IS, ACSI identifies mutually-closed approximate weak common in-

92

5.8. A runtime heuristic for discovering approx. weak common intervals

terval partners [k, l] in TS. To this end, it iterates through elements of Pos[i], i.e.,
positions in TS that contain character i (lines 3-7 of Algorithm 8). For each such
position y ∈ Pos[i] the algorithm calls a recursive procedure, denoted EXTEND
(line 5). This recursive procedure requires 5 parameters, corresponding to fixed
bounds [i, j]IS , the currently processed interval [k, l] in TS, and the current number
of allowed indels, d. In the initial call, interval [k, l]TS is set to [y, y]TS and d = δ.
EXTEND then increases interval [k, l]TS to both sides until [i, j] ∩ TS[k− 1] = ∅ and
[i, j]∩TS[l + 1] = ∅ (line 10). If in this process the algorithm observes characters i− 1
or j + 1 in C(TS[k, l]), EXTEND returns to the previous call (lines 11-13). Otherwise,
it verifies if ([i, j]IS , [k, l]TS) is a mutually-closed approximate weak common inter-
vals pair by testing if the number of characters in [i, j] that are missing in C(TS[k, l])
is less than or equal to the current d and if i ∈ C(TS[k, l]) (line 14). The interval pair
is reported if both conditions are validated. EXTEND then increases [k, l]TS to the
left, thereby consuming indel positions as long as their overall number remains less
than or equal to the current d (line 17). If a position k′ < k− 1 has been found such
that [i, j] ∩ T[k′] 6= ∅, EXTEND is called recursively with parameter values [i, j]IS ,
[k′, l]TS , and the remaining number of allowed indels, given by d + k′ + 1− k (lines
18-20). This step is also symmetrically executed for the right side of [k, l]TS (lines
21-24).

The actual heuristic speed-up of the algorithm is achieved by calling procedure
EXTEND in line 5 not for all intervals [i, j] in IS but only for those that have chances
of success for being a weak common intervals pair with an interval [k, l] around
a position y ∈ Pos[i]. Thus, the neighborhood around position y is scanned for
suitable values of j prior to the execution of EXTEND. Instead of iterating through
all j ∈ [i, n] in lines 4-6, where n = |S|, a heuristic improvement is achieved by
choosing only those values J ⊆ [i, n] that are reachable within at most δ indels
around position y in TS. To this end, the algorithm finds the leftmost position
k? ≤ y in TS such that |{p | k? ≤ p ≤ y : TS[p] ∩ [i, n] = ∅}| ≤ δ. Likewise it
identifies the rightmost position l? ≥ y such that |{p | y ≤ p ≤ l? : TS[p] ∩ [i, n] =
∅}| ≤ δ. We can now set J = C(TS[k?, l?]) ∩ [i, n]. In practice |J | � n − i + 1.
Identifying k?, l? and J is achievable within O(n + m) time and O(n) space. The
algorithm further improves in runtime in practice by identifying the largest possible
rightmost bound j? in S such that |J ∩ [i, j?]| ≤ δ. Subsequently, characters larger
than j? in TS are omitted in further iterations. These characters may lead to further
indels in TS, thus reducing the largest possible interval around y that is reachable
within at most δ indels. The process of identifying the leftmost position k? and
rightmost position l? in T is re-iterated, resulting in a possibly reduced character set
J = C(TS[k?, l?]) ∩ [i, j?]. The iteration stops if the value of j? no longer changes.

Example 11 Given indeterminate strings S = {g} {b, p} {x} {n, p} {d, o, s} {a, z} {e, n,
w} { f } {l, v} {h, u, z} {j, r} {k} {m, q, y} and T = {d} {g, b} {a} {p, s} {n} {a, b} { f ,
m, w} {e, w} {i} {q, y} {h} {c, r} {z} and indel threshold δ = 1, Figure 5.3 (a) shows for

93

Chapter 5. Family-free synteny

IS 1 2 3 4 5 6 7 8 9 10 11 12 13

TS 5 1
2

6 2
4
5

4
7

2
6

7
8

13

7 ∞ 13 10
11

11 6
10

δ′left = 1 δ′right = 1

(a)

IS 1 2 3 4 5 6 7 8 9 10 11 12 13

TS 5 1
2

6 2
4
5

4
7

2
6

7
8

13

7 ∞ 13 10
11

11 6
10

δ′′left = 1 δ′′right = 2

(b)

IS 1 2 3 4 5 6 7 8 9 10 11 12 13

TS 5 1
2

6 2
4
5

4
7

2
6

7
8

13

7 ∞ 13 10
11

11 6
10

(c)

Figure 5.3: Visualization of heuristic runtime improvement for Example 11. The
initial step, shown in Figure (a) leads to identification of index set J =
{4, 5, 6, 7, 8, 10, 11, 13}. In the second iteration shown in Figure (b), the index set is
reduced to J = {4, 5, 6, 7, 8}. J represents the set of all right-most interval bounds
of S that are candidates for approximate common intervals. By calling procedure
EXTEND for each j ∈ J , ACSI identifies candidate intervals, shown in Figure (c),
for mutually-closed approximate weak common intervals pairs.

94

5.9. Results and Discussion

left bound i = 4 in S the search strategy of the heuristic improvement in its initial step,
which determines J = {4, 5, 6, 7, 8, 10, 11, 13} = {4, . . . , 13} \ {9, 12}. Since indel thresh-
old is set to δ = 1, the largest rightmost bound in S is j? = 11. In the second iteration
shown in Figure 5.3 (b), J = {4, 5, 6, 7, 8} and j? = 8. The process terminates after the
third iteration, since the largest rightmost bound j? does not change. ACSI then calls for
each j ∈ J = {4, 5, 6, 7, 8} procedure EXTEND to identify candidate intervals, shown in
Figure 5.3 (c), for mutually closed approximate weak common intervals pairs.

In terms of complexity, table Pos can be constructed within O(‖TS‖) time and re-
quires O(‖TS‖) space as mentioned in Section 5.5. Algorithm ACSI calls EXTEND
O(|S| · ‖TS‖) times. EXTEND itself requires O(δ2‖TS‖) time and O(δ2|S|) space,
which can be improved to O(δ|S|) space if the interval extension to the left side
is always performed before extending to the right. The heuristic speed-up dete-
riorates the asymptotic runtime by a factor of O(|S|2 + |S| · |T|) time. Altogether,
ACSI requires O(|S| · ‖TS‖ · (|S|2 + |S| · |T|+ δ2‖TS‖) time and O(‖TS‖+ δ|S|) space.
However in practice Algorithm ACSI outperforms both WCII and AWCII as shown
in the next section.

5.9 Results and Discussion

In the following, we highlight the benefit of our family-free synteny model in com-
parison with present family-based approaches. To this end, we chose a genomic
dataset of bacterial genomes that has been used in a prior synteny study [69] and
was originally obtained from [32]. The dataset features 133 chromosomal sequences,
of which we removed all sequences originating from plasmids.

5.9.1 Gene family-based dataset

Genes in this dataset are annotated with COG (Clusters of Orthologous Groups)
identifiers [107] which are used to establish a homology assignment between genes.
The set of genes in the dataset was revised by the latest available gene information
under the accession numbers of the respective genomes at NCBI. To this end, genes
that are meanwhile marked as pseudo-genes were removed from the dataset. No
genes were added, since COG annotations of new genes are not available. We fur-
ther omitted all genomes from subsequent analyses of which more than 10 pseudo-
genes were removed in this process. 93 genomes remained, comprising on average
2726 genes (minimum/maximum number of genes: 784/8317).

5.9.2 Gene family-free dataset

Pairwise similarities between genes in the dataset were obtained using the relative
reciprocal BLAST score [84]. Genes were compared on the basis of their encoding

95

Chapter 5. Family-free synteny

Stringency f Avg. #disconnected genes Avg. pairwise similarities Avg. node degree

unpruned 3262 6499 1.93
0.1 3271 6242 1.85
0.2 3312 5349 1.60
0.3 3364 4137 1.25
0.4 3420 3095 0.96
0.5 3486 2336 0.74
0.6 3565 1784 0.58
0.7 3661 1384 0.46
0.8 3775 1088 0.38
0.9 3901 877 0.31

Table 5.1: Average number of disconnected genes, average number of pairwise simi-
larities, and average node degree of genes in pairwise gene similarity graphs as a
function of stringency in our dataset. The average number of genes per pairwise
comparison in the dataset is 5444. Disconnected genes are genes that are not
incident to an edge in pairwise gene similarity graphs.

protein sequence using BLASTP [3] with an e-value threshold of 0.1 and disabled
composition-based score adjustments.

For evaluation purposes, we produced different degrees of pruned pairwise gene
similarity graphs by filtering spurious gene similarities. To this end, we employed
an undirected variant of the stringency criterion parameterized by f ∈ [0, 1] as
proposed in [64]. Given two genomes G and H, the stringency filter takes into
account gene similarities of genes g ∈ C(G) and h ∈ C(H), when calculating a local
threshold value for gene similarity σGH(f , g, h). The maximal similarity of gene g
is given by σmax

GH (g) = maxh′∈C(H)(σGH(g, h′)). The maximal similarity of gene h to
any gene g in genome G is analogously defined. The stringency parameter f ∈ [0, 1]
allows to restrict the set of gene similarities to those with a certain degree of locally
minimal weight:

σGH(f , g, h) =
{

σGH(g, h) if σ(g, h) ≥ f ·max{σmax
GH (g), σmax

HG (h)}
0 otherwise.

The effects in the choice of parameter values for f captured on three different prop-
erties of our dataset in pairwise comparisons are shown in Table 5.1.

To evaluate our family-free model, we ran an implementation of ACSI for δ =

0 on all unpruned pairwise gene similarity graphs in our dataset and compared
the obtained 4, 015, 841 family-free syntenic blocks with respect to their contained
COG identifiers. We discarded all family-free syntenic blocks for which at least
one interval contained less than two genes with a COG identifier. In the remaining
1, 194, 036 family-free syntenic blocks, we observed that the similarity between their
respective sets of COG identifiers depends strongly on the family-free synteny score
proposed in Equation (5.2), as shown in Table 5.2. Among the family-free syntenic

96

5.9. Results and Discussion

family-free synteny score
overlap in % < 1 [1− 2[[2− 3 [3− 4[[4− 5[[5− 6[[6− 7[[7− 8[[8− 9[[9− 10[≥ 10

100 28.1 22.0 46.7 78.4 90.2 75.6 84.6 63.2 86.5 78.4 95.0
[80− 100[0.0 0.0 0.1 0.2 0.4 1.8 2.0 10.4 8.2 18.5 4.9
[60− 80[1.7 1.7 2.7 2.1 2.7 13.6 8.4 17.4 4.0 2.6 0.2
[40− 60[12.0 14.7 18.5 9.9 2.4 2.5 2.1 5.0 0.7 0.3 0.0
[20− 40[0.1 0.1 0.3 0.7 1.1 3.4 1.5 1.8 0.1 0.2 0.0
[0− 20[58.1 61.4 31.8 8.8 3.2 3.1 1.4 2.7 0.6 0.2 0.0

total 30002 239077 289450 253643 199372 49254 58889 17952 23603 4568 28226

Table 5.2: Statistics of overlaps between the COG identifier sets in family-free syntenic
blocks. Columns stand for bins of family-free synteny scores, rows for bins of over-
lap sizes of their corresponding COG identifier sets. Values are given in percent
with respect to the total number of blocks per score bin given in the last row.

blocks with a score greater than or equal to 10, 95% have the same set of identifiers
in both intervals. While this number decreases for smaller scores, still a quarter
of the family-free syntenic blocks with a score lower than 1 do not differ in their
COG identifiers. This shows that our approach is able to detect syntenic blocks that
would also be detected with well-established gene family-based approaches. This is
not a surprise, as weak common intervals are in fact a generalization of the classic
common intervals model: A run of ACSI on a dataset where similarity scores are
only set between members with the same COG identifiers finds the exact same set
of syntenic blocks as the common intervals-based approach.

To evaluate the predictive power of our approach, we compare the output of our
program to syntenic blocks predicted by the reference gene cluster algorithm (RGC)
[57]. While this algorithm is capable of multiple genome comparison and the de-
tection of faint conservation patterns, we use it in this context for pairwise genome
comparison to detect interval pairs (I1,I2) whose gene sets have a symmetric set
distance of at most 2. It has been previously observed that the generalization to
approximate conservation underlying the RGC method is not only a way to find
imperfectly conserved syntenic blocks, but also a means to add robustness against
errors in gene family assignment. For example, an interval pair may appear to have
a set distance of two because besides the shared genes, there is one gene unique to
I1 and one gene unique to I2. However a closer inspection of the genes reveals that
these genes are in fact homologs that were not recognized in the preceeding parti-
tioning of genes into homology families. We ran RGC on all pairs of the 93 genomes
with gene family assignments obtained from the COG database, thereby setting pa-
rameters δ = 2 (maximal tolerated symmetric set distance) and s = 3 (minimal inter-
val length). The program returned among others 192, 900 “single-mismatch blocks”,
i.e., syntenic blocks that contain exactly one gene family in each interval that is not
shared between the two. In 47, 453 (24.60%) of the single-mismatch blocks, we ob-
serve a similarity score between the two extra genes in our BLAST dataset. ACSI
found 89.84% of the single-mismatch blocks and 75.24% of the extra gene pairs
turned out to be pairwise best hits. Moreover we observe that in 18, 143 among

97

Chapter 5. Family-free synteny

500 1000 1500 2000 2500
10−2

10−1

100

101

102

103

104

∥TS∥

R
un

tim
e

in
 s

ec
on

ds

AWCII b=0
WCII
ACSI b=0

Figure 5.4: Running times of algorithms ACSI and AWCII with δ = 0 and WCII, mea-
sured in a sample of 24 pairwise comparisons of genomes that are contained in the
studied dataset. All algorithms produced identical output (as expected). Running
times are plotted against the number of pairwise gene similarities (equivalent to the
size of ‖TS‖) contained in the pairwise comparison.

the single-mismatch blocks predicted by RGC the two extra genes have exactly the
same annotation string. (Annotations containing the word “hypothetical” were ig-
nored.) ACSI finds 90.19% of these single-mismatch blocks. Surprisingly, 4.59% of
the blocks in which the two extra genes had best hits to each other were not found
by ACSI. This is because for one or more of the other genes in the syntenic blocks
our BLAST results did not return any similarity score to a gene in the other interval.
Apparently, genes in syntenic blocks can be very faintly related in terms of sequence
similarity.

In practice ACSI outperforms both WCII and AWCII as shown by Figure 5.4. Thus,
in all subsequent results, we used ACSI to compute mutually-closed (approximate)
weak common intervals.

5.9.3 Comparison with RegulonDB

We now evaluate the ability of our family-free model to identify gene clusters in
bacterial genomes and compare our results with those obtained by RGC with gene
families obtained from the COG database.

Among other information about transcriptional regulation, RegulonDB [89] pro-
vides a list of operon locations in Escherichia coli K12. While the majority of operons
in RegulonDB are computationally predicted, some are also experimentally con-
firmed. From 2649 operons reported in RegulonDB, 846 span two or more genes.
We mapped these operons to the annotation of the E. coli K12 genome in our data set.
However, 104 operons contain genes that are not annotated in our dataset and thus
were omitted from subsequent analysis. The remaining 742 operons span between 2
and 16 genes, 71.83% of which span 2 or 3 genes. The number of detected operons
depends strongly on the degree of evolutionary relatedness between the E. coli K12
genome and other genomes in the dataset. While ACSI and RGC predicted many

98

5.9. Results and Discussion

Unique to. . .
RGC
δ = 0

RGC
δ = 2

ACSI
δ = 0,
f = 0.0

ACSI
δ = 0,
f = 0.9

ACSI
δ = 2,
f = 0.0

ACSI
δ = 2,
f = 0.9

RGC δ = 0 - 118 133 119 190 175
RGC δ = 2 0 - 56 49 80 72
ACSI δ = 0, f = 0.0 4 45 - 0 61 52
ACSI δ = 0, f = 0.9 11 59 21 - 82 62
ACSI δ = 2, f = 0.0 0 8 0 0 - 0
ACSI δ = 2, f = 0.9 5 20 11 0 20 -

Table 5.3: Unique findings (with 100% overlap) of operons by ACSI and RGC with
minimum interval length s = 2 and varying parameters. Each column shows the
number of unique findings of an algorithm and parameter setting indicated by the
column heading in comparison to algorithms and parameter settings specified in
the rows.

occurrences in other closely related γ-proteobacteria in our dataset, for the majority
of genomes only few occurrences of operons were reported. The sets of reported
operons found by ACSI and RGC are not entirely overlapping. Instead, ACSI finds
operons which RGC does not find and vice versa. A complete overview of unique
findings for algorithms and parameter settings is shown in Table 5.3.

Figure 5.5 gives an overview of the number of found operons in the dataset, in
which genomes are ordered according to the cumulative sum of operon findings
by ACSI. We differentiated between findings where the gene set of a family-free
syntenic block was a superset of genes of an operon (labeled “100% overlap”), more
than 50%, or at most 50% of genes overlapped. In cases where multiple family-
free syntenic blocks in different locations of the other genomes contained operon
genes, we chose the block with the highest overlap. The graph visualizing the sum
over all 100%, > 50%, and ≤ 50% overlaps is labeled as “cumulative”. Out of the
742 operons, 633 are entirely overlapped by family-free syntenic blocks reported by
ACSI in all genome comparisons against E. coli K12 in the unpruned graph and 612
operons for a pruned graph with f = 0.9. In comparison, RGC with δ = 0 and s = 2
finds 504 operons, whereas 622 operons are found with parameter settings δ = 2
and s = 3.

5.9.4 Discussion

In this chapter, we introduced a family-free model for synteny detection that is
based on the study of (approximate) weak common intervals in indeterminate
strings. Our family-free model relies on a scoring scheme of family-free syntenic
blocks which rates both interval size and the degree of similarity between genes
contained in the two corresponding intervals.

99

Chapter 5. Family-free synteny

Figure 5.5: Number of operons in genomes reported by RGC with parameter settings
δ = 0, s = 2 (top left) and δ = 2, s = 3 (bottom left) and ACSI in unpruned graphs
(middle) and pruned graphs with f = 0.9 (right) for δ = 0 (top) and δ = 2 (bottom).
Genomes are ordered according to the cumulative sum of reported operons.

We use our family-free model to predict syntenic blocks and gene clusters be-
tween pairs of genomes. This approach is evaluated in comparison with the com-
mon intervals-based reference gene cluster model of Jahn [57]. To this end, we
analyzed genomic data of 93 bacterial genomes annotated with COG identifiers
and studied operons reported in RegulonDB [89]. The results show that the corre-
lation of COG annotations in family-free syntenic blocks depends strongly on the
family-free synteny score: For family-free syntenic blocks with scores 10 or higher,
95% or more have identical COG identifiers in both corresponding intervals. More-
over, in an analysis of syntenic blocks with faint conservation pattern we observed
that our approach is able to predict conserved regions which would be missed by
family-based methods due to deficient gene family assignments. Further results
indicate that sequence similarities are not always sufficient to establish homologies.
Therefore, it may be worthwhile to enrich the gene similarity graph with other in-
formation such as COG data.

The analysis of operons contained in RegulonDB shows that the number of oper-
ons occurring in family-free syntenic blocks obtained by ACSI is higher than in
their counterparts reported by RGC. However, we note that the presented analyses
do not capture the specificity of the studied algorithms in finding operons. That is,
family-free syntenic blocks in which operon locations are reported may span several
additional genes. This may be due to the fact that the genomic region surrounding
the operon exhibits conserved gene content, or due to the deficiency of the model

100

5.9. Results and Discussion

in differentiating between conserved and unconserved gene content, as a result of
an unreliable measure of gene similarity.

101

Chapter 5. Family-free synteny

102

Chapter 6
Conclusion and outlook

In this thesis, we explored a recent line of research in the field of computational com-
parative genomics, whose goal is to devise new methods for rearrangement studies
that do not require prior gene family assignments. We established family-free mod-
els in two major applications of the field: We present two different approaches to
detect conserved structures in gene orders. Furthermore, we introduce a family-free
model in ancestral genome reconstruction that addresses the problem of construct-
ing the median of three genomes.

In Chapter 3, we presented a family-free model to identify conserved adjacencies
between two or more genomes. To this end, we formulated problem FF-Adjacencies,
which asks for a matching in the gene similarity graph of two genomes that maxi-
mizes a linear combination of a measure of conserved adjacencies and edge weights,
parameterized by α ∈ [0, 1]. We subsequently extended problem FF-Adjacencies to
the study of two or more genomes. Focusing on the pairwise case, we proved prob-
lem FF-Adjacencies NP-hard for 0 < α < 1

3 , which was later shown to be true for
α > 0 by Kowada et al. [62].

We subsequently described 0-1 linear program FFAdj-2G to compute exact solu-
tions of problem FF-Adjacencies for two genomes. We then devised two methods
to identify usually very good, but not generally optimal solutions in the search
space of problem FF-Adjacencies. One of the methods could be applied in practice
and showed outstanding performance in reducing the number of variables and con-
straints of program FFAdj-2G. With that, we are able to compute exact solutions
between genomes with more than 4000 genes. Furthermore, we present heuristic
FFAdj-MCS that is based on the idea of identifying maximal common substrings
between two gene orders. Both, FFAdj-2G and FFAdj-MCS are based on previous
works of Angibaud et al. [6].

Our new algorithms were evaluated on a simulated dataset. To this end, we
utilized ALF [33], a popular framework for genome simulations. Parameters of

103

Chapter 6. Conclusion and outlook

genome evolution in ALF were adjusted to high rates of genome rearrangements
and gene duplications/losses, while keeping sequence evolution at a moderate rate.
This results in a particularly difficult scenario for family-free models. Nevertheless,
one-to-one ortholog assignments derived from solutions of our algorithms exhibited
high precision, recall and accuracy. Yet, maximum weight matchings (that do not
make use of synteny information) in our dataset showed comparable performance
in one-to-one orthology prediction. However, the numbers of conserved adjacencies
in solutions of program FFAdj-2G and FFAdj-MCS were considerably larger. This
result is not surprising because of the many gene duplications that led to numerous
synteny-independent orthologies between genes of two genomes. Consequently, the
identification of positional orthologs is a difficult task, to whose realization gene
family-free methods can tremendously contribute.

Lastly, both algorithms were applied on a dataset of twelve γ-proteobacterial
genomes. We compared our results to that of Angibaud et al. [6], showing that
our matchings are considerably larger and contain on average more conserved adja-
cencies.

We then proceeded to study a simple family-free model for ancestral reconstruc-
tion in Chapter 4. In doing so, we proposed problem FF-Median, which asks for the
construction of a median of three given genomes that maximizes a pairwise mea-
sure of conserved adjacencies. We showed that this problem is inherently related
to the weighted independent set problem. We proved by reduction that problem
FF-Median is MAX SNP-hard. We then described 0-1 linear program FF-Median
for its solution.

The model underlying problem FF-Median is prone to events of gene family evo-
lution: its has limited ability to tolerate gene duplications and is generally unable
cope with gene losses that occurred on the evolutionary paths between the common
ancestor and the three genomes subject to analysis. Unfortunately, preprocessing
methods that are commonly used in gene family-based analysis to treat differences
in gene content prior to ancestral reconstruction fail in family-free analysis. An
attempt to extend problem FF-Median toward a model with improved resistance
against perturbations in the gene order caused by events of gene family evolution
leads to a problem that is computationally infeasible for practical applications. We
therefore proposed heuristic FFAdj-3G-H that integrates exact solutions to prob-
lem FF-Adjacencies between two genomes into a (possibly suboptimal) solution to
problem FF-Adjacencies for three genomes. The heuristic employs Tannier et al.’s
method [106] to construct a valid median genome.

Experiments on simulated datasets reveal superior performance of heuristic
FFAdj-3G-H in identifying positional orthologs and in reconstructing the ances-
tral gene order of the common ancestor of three genomes. We then demonstrate
applicability of heuristic FFAdj-3G-H in biological datasets by reconstructing the
gene order of protein coding genes of the black death, using three extant Yersinia

104

pestis strains. The gene order and the one-to-one orthology assignment constructed
by FFAdj-3G-H is mostly in agreement with results of Rajaraman et al. [87]. This
outcome is expected, since the three Yersinia pestis strains descended only 650 years
ago from the black death. Consequently, the number of evolutionary modifications
along their individual evolutionary paths is very small.

In Chapter 5 we presented family-free models and algorithms to discover syn-
tenic blocks of two genomes in a family-free setting. However, unlike our previous
family-free models, the detection of family-free syntenic blocks does not lead to
one-to-one orthology assignments between genes. This simplification allowed us to
design fast polynomial time algorithms to discover all family-free syntenic blocks
of two genomes by means of a pairwise gene similarity measure. In doing so, we
phrased the detection of family-free syntenic blocks as a problem of discovering
common intervals in indeterminate strings. Whereas many other traditional string
problems have also been studied in indeterminate strings, the problem of detect-
ing common intervals remained unaddressed. We explored three common interval
models in indeterminate strings: Weak common intervals, strict common intervals,
and approximate weak common intervals. We then devised efficient polynomial
time algorithms for their corresponding discovery problems.

We evaluated our family-free synteny model by discovering family-free syntenic
blocks in 93 bacterial genomes. The identified pairs of syntenic blocks show high
overlap in COG identifiers. Moreover, we tested the capability of our family-free
method in detecting gene clusters, by identifying operons in an Escherichia coli K 12
strain that are reported in RegulonDB [89], a database collecting information about
for transcriptional regulation. We compared our results to those obtained by a
family-based algorithm of Jahn [57] on the basis of COG annotations. The evaluation
showed that our family-free approach is able to find considerably more operons.

Outlook

With program FFAdj-2G, we presented a first exact algorithm to study family-
free adjacencies. Yet, there is much room for improving its practical running time
through further studies that explore the solution space of problem FF-Adjacencies.
Such studies may lead to the identification of other suboptimal solutions that could
then be discarded prior to running program FFAdj-2G. In doing so, the remaining
subgraph test described in Section 3.7.2 should be put into practice, by evaluat-
ing fast algorithms to compute maximum weighted matchings (or approximations
thereof).

In all our family-free analyses, we employed the relative reciprocal BLAST score [84]
to measure similarities between genes. While sequence similarity is an obvious and
reasonable measure in constructing the gene similarity graph, similarity scores can

105

Chapter 6. Conclusion and outlook

also integrate additional information such as functional similarity. Such informa-
tion can be obtained from various databases, most notably, from the Gene Ontology
database [9]. Family-free genome comparisons of this kind may give further insights
into the functional organization of the genome. Moreover, family-free genome com-
parison can also be performed based on distances between genes, instead of simi-
larities. The use of distance measures could lead to the formulation of family-free
distances that are suitable for distance-based phylogenetic reconstruction. A princi-
pal study was performed by Martinez et al. [72], who proposed a family-free variant
of the well-known double cut and join (DCJ) distance. However, their distance lacks
metric properties, a not surprising consequence of the unconstrained similarity mea-
sure. Even worse, phylogenetic reconstruction requires tree-additive metrics, yet
the DCJ distance as well as most other gene order distances rely on the principle
of parsimony, which makes them generally not tree-additive [1, 102]. Nevertheless,
it is well-known that many tree reconstruction algorithms, such as the prominent
neighbor-joining method [88], are to a certain extent robust against deviations from
tree-additivity, which lead to the study of near-additive metrics [10]. A promising
avenue of further research is to combine family-free distances with substitution rate
functions of DNA substitution models. Whereas the latter provide anticipated prop-
erties of tree-additivity, family-free distances could increase accuracy in reconstruc-
tion, as the rate of genome rearrangements is generally much lower than the rates
of point mutations. Such combined distances can be studied in a similar framework
as proposed in [36] by means of affine-additive distance mappings.

Future work in the study of family-free medians should certainly include a study
of the solution space of problem FF-Median, which may lead to the exclusion of
suboptimal solutions or the fixation of optimal components prior to analysis. Such
results are already known for the family-based problem: Kováč showed in [61]
that in the mixed multichromosomal breakpoint median of three all adjacencies
occurring in two or three genomes are part of an optimal solution. Further efforts
should be directed toward the formulation of a family-free median problem that
tolerates gene duplications and losses.

Furthermore, our model of family-free synteny could benefit from an extension to
the simultaneous discovery of syntenic blocks in more than two genomic sequences.
This requires an extension of the definition of closedness from pairs to sets of inter-
vals in two or more indeterminate strings. We suggest the following definition:

Definition 25 A set of intervals C in two or more indeterminate strings is closed if there is
no interval c in C that has a right or left neighboring position whose character set intersects
with the character sets of all other intervals c′ 6= c of C.

Note that closed intervals and mutually-closed intervals are equivalent in the
pairwise case. However, the definition allows that subsets of a set of closed intervals
may not be closed. This makes the enumeration of closed weak common intervals

106

in more than two indeterminate strings particularly challenging and a worthwhile
subject of future work.

In this thesis, we presented three different studies of family-free genome com-
parison. Yet, the still young branch of family-free genome comparison offers many
directions in which presented studies can be extended. Most evidently, the princi-
ple of family-free genome comparison can be applied to numerous other existing
family-based studies. More interestingly, the family-free principle could even be
integrated into a methodology to study sequence, synteny, and gene family evolu-
tion simultaneously. Such methods will benefit many kinds of applications, ranging
from methods for species tree/gene tree reconciliation and gene tree reconstruc-
tion to the study of whole genome duplications and the reconstruction of ancestral
genomes. The idea of integrative methods to study genome evolution as a whole is
not new: It was already exploited in a seminal paper by Sankoff and El-Mabrouk in
2000 [97] and its relevance was recently emphasized by Chauve et al. [30]. This work
contributes to the cause by reducing the gap between studies of sequence evolution
and genome rearrangements.

107

108

Bibliography

[1] S. Aganezov and M. A. Alekseyev. On pairwise distances and median score
of three genomes under DCJ. BMC Bioinformatics, 13 Suppl 19:S1, 2012.

[2] M. A. Alekseyev and P. A. Pevzner. Breakpoint graphs and ancestral genome
reconstructions. Genome Res., 19(5):943–957, 2009.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol, 215(3):403–410, 1990.

[4] A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprint-
ing via Parikh mapping. J. Discrete Algorithms, 1(5–6):409–421, 2003.

[5] A. Amir, L. Gasieniec, and R. Shalom. Improved approximate common inter-
val. Inform. Process. Lett., 103(4):142–149, 2006.

[6] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. Efficient tools for
computing the number of breakpoints and the number of adjacencies between
two genomes with duplicate genes. J. Comp. Biol., 15(8):1093–1115, 2008.

[7] P. Antoniou, M. Crochemore, C. S. Iliopoulos, I. Jayasekera, and G. M. Landau.
Conservative string covering of indeterminate strings. In Proc. of PSC 2008,
108–115. 2008.

[8] P. Antoniou, C. S. Iliopoulos, I. Jayasekera, and W. Rytter. Computing repeti-
tive structures in indeterminate strings. In Proc. of PRIB 2008, 108–115. 2008.

[9] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, et al. Gene on-
tology: tool for the unification of biology. the gene ontology consortium. Nat.
Genet., 25(1):25–29, 2000.

[10] K. Atteson. The performance of neighbor-joining methods of phylogenetic
reconstruction. Algorithmica, 25(2–3):251–278, 1999.

109

[11] O. Attie, A. E. Darling, and S. Yancopoulos. The rise and fall of breakpoint
reuse depending on genome resolution. BMC Bioinformatics, 12 Suppl 9:S1,
2011.

[12] R. Bar-Yehuda and S. Moran. On approximation problems related to the inde-
pendent set and vertex cover problems. Discrete Appl. Math., 9(1):1–10, 1984.

[13] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. of
LATIN 2000, vol. 1776 of LNCS, 88–94. 2000.

[14] A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. In
Proc. of WABI 2002, vol. 2452 of LNCS, 464–476. 2002.

[15] A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. J. Comp.
Biol., 13(2):567–578, 2006.

[16] A. Bergeron and J. Stoye. On the similarity of sets of permutations and its
applications to genome comparison. J. Comp. Biol., 13(7):1340–1354, 2006.

[17] M. Bernt, D. Merkle, and M. Middendorf. Solving the preserving reversal
median problem. IEEE/ACM Trans. Comput. Biol. Bioinf., 5:332–347, 2008.

[18] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrange-
ment. Gene, 172(1):GC 11–GC 17, 1996.

[19] G. Blin, A. Chateau, C. Chauve, and Y. Gingras. Inferring positional homologs
with common intervals of sequences. In Proc. of RECOMB 2006, vol. 4205 of
LNCS, 24–38. 2006.

[20] G. Blin, C. Chauve, and G. Fertin. The breakpoint distance for signed se-
quences. In Proc. of CompBioNets 2004, vol. 3 of Texts in Algorithmics, 3–16.
2004.

[21] G. Blin, C. Chauve, and G. Fertin. Genes order and phylogenetic reconstruc-
tion: Application to γ-proteobacteria. In Proc. of RECOMB-CG 2005, vol. 3678
of LNCS, 11–20. 2005.

[22] G. Blin, C. Chauve, G. Fertin, R. Rizzi, and S. Vialette. Comparing genomes
with duplications: A computational complexity point of view. IEEE/ACM
Trans. Comput. Biology Bioinf., 4(4):523–534, 2007.

[23] S. Böcker, K. Jahn, J. Mixtacki, and J. Stoye. Computation of median gene
clusters. J. Comput. Biol., 16(8):1085–1099, 2009.

[24] K. I. Bos, V. J. Schuenemann, G. B. Golding, H. A. Burbano, N. Waglechner,
et al. A draft genome of yersinia pestis from victims of the black death. Nature,
478(7370):506–510, 2011.

110

[25] G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene
orders in the ancestral species. Genome Res., 12(1):26–36, 2002.

[26] M. D. V. Braga, C. Chauve, D. Doerr, K. Jahn, J. Stoye, A. Thévenin, and R. Wit-
tler. The potential of family-free genome comparison. In Models and Algorithms
for Genome Evolution, vol. 19 of Comp. Biol., chap. 13, 287–323. Springer London,
2013.

[27] D. Bryant. The complexity of calculating exemplar distances. Comparative Ge-
nomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Align-
ment, and the Evolution of Gene Families, 1:207–212, 2004.

[28] I. J. Burgetz, S. Shariff, A. Pang, and E. R. M. Tillier. Positional homology in
bacterial genomes. Evol. Bioinform. Online, 2:77–90, 2006.

[29] A. Caprara. The reversal median problem. Informs J. Computing, 15(1):93–113,
2003.

[30] C. Chauve, N. El-Mabrouk, L. Guéguen, M. Semeria, and E. Tannier. Duplica-
tion, rearrangement and reconciliation: A follow-up 13 years later. In Models
and Algorithms for Genome Evolution, vol. 19 of Comp. Biol., 47–62. Springer
London, 2013.

[31] J. C. Chiu, E. K. Lee, M. G. Egan, I. N. Sarkar, G. M. Coruzzi, and R. De-
Salle. OrthologID: Automation of genome-scale ortholog identification within
a parsimony framework. Bioinformatics, 22(6):699–707, 2006.

[32] F. D. Ciccarelli, T. Doerks, C. von Mering, C. J. Creevey, B. Snel, and P. Bork.
Toward automatic reconstruction of a highly resolved tree of life. Science,
311(5765):1283–1287, 2006.

[33] D. A. Dalquen, M. Anisimova, G. H. Gonnet, and C. Dessimoz. Alf – a simula-
tion framework for genome evolution. Mol. Biol. Evol., 29(4):1115–1123, 2012.

[34] C. N. Dewey. Positional orthology: Putting genomic evolutionary relation-
ships into context. Brief. Bioinformatics, 12(5):401–412, 2011.

[35] G. Didier, T. Schmidt, J. Stoye, and D. Tsur. Character sets of strings. J. Discr.
Alg., 5(2):330–340, 2007.

[36] D. Doerr, I. Gronau, S. Moran, and I. Yavneh. Stochastic errors vs. modeling
errors in distance based phylogenetic reconstructions. Algorithm. Mol. Biol.,
7(1):22, 2012.

[37] D. Doerr, J. Stoye, S. Böcker, and K. Jahn. Identifying gene clusters by dis-
covering common intervals in indeterminate strings. BMC Genomics, 15(Suppl
6):S2, 2014.

111

[38] D. Doerr, A. Thévenin, and J. Stoye. Gene family assignment-free comparative
genomics. BMC Bioinformatics, 13(Suppl 19):S3, 2012.

[39] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in
bipartite graphs. In Proc. of SODA 2012, 1413–1424. 2012.

[40] P. P. Feijão and J. J. Meidanis. SCJ: A breakpoint-like distance that simplifies
several rearrangement problems. IEEE/ACM Trans. Comput. Biol. and Bioinf.,
8(5):1318–1329, 2011.

[41] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of
Genome Rearrangements. MIT Press, 2009.

[42] C. Frech and N. Chen. Genome-wide comparative gene family classification.
PLoS ONE, 5(10):e13 409, 2010.

[43] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. MSOAR: A high-
throughput ortholog assignment system based on genome rearrangement. J.
Comput. Biol., 14(9):1160–1175, 2007.

[44] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Comput. Surv., 18(1):23–38, 1986.

[45] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[46] C. G. Ghiurcuta and B. M. E. Moret. Evaluating synteny for improved com-
parative studies. Bioinformatics, 30(12):i9–i18, 2014.

[47] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polyno-
mial algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1–
27, 1999.

[48] X. He and M. H. Goldwasser. Identifying conserved gene clusters in the pres-
ence of homology families. J. Comp. Biol., 12(6):638–656, 2005.

[49] S. Heber, R. Mayr, and J. Stoye. Common intervals of multiple permutations.
Algorithmica, 60(2):175–206, 2011.

[50] S. Heber and J. Stoye. Algorithms for finding gene clusters. In Proc. of WABI
2001, vol. 2149 of LNCS, 252–263. 2001.

[51] J. Holub and W. Smyth. Algorithms on indeterminate strings. In Proc. of
AWOCA 2003, 36–45. 2003.

[52] J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate
strings. J. Discr. Alg., 6(1):37–50, 2008.

112

[53] S. B. Hoot and J. D. Palmer. Structural rearrangements, including parallel
inversions, within the chloroplast genome of Anemone and related genera. J.
Mol. Evol., 38(3):274–281, 1994.

[54] D. J. Houck and R. R. Vemuganti. An algorithm for the vertex packing prob-
lem. Operations Research, 25(5):773–787, 1977.

[55] C. Iliopoulos, M. S. Rahman, M. Voracek, and L. Vagner. Finite automata
based algorithms on subsequences and supersequences of degenerate strings.
J. Discr. Alg., 8(2):117 – 130, 2010.

[56] C. S. Iliopoulos, M. S. Rahman, and W. Rytter. Algorithms for two versions of
LCS problem for indeterminate strings. J. Comb. Math. Comb. Comp., 71:155–
172, 2009.

[57] K. Jahn. Efficient computation of approximate gene clusters based on refer-
ence occurrences. J. Comput. Biol., 18(9):1255–1274, 2011.

[58] J. M. Joseph and D. Durand. Family classification without domain chaining.
Bioinformatics, 25(12):i45–i53, 2009.

[59] O. Keller, M. Kollmar, M. Stanke, and S. Waack. A novel hybrid gene predic-
tion method employing protein multiple sequence alignments. Bioinformatics,
27(6):757–763, 2011.

[60] E. V. Koonin. Orthologs, paralogs, and evolutionary genomics. Annu. Rev.
Genet., 39:309–338, 2005.

[61] J. Kováč. On the complexity of rearrangement problems under the breakpoint
distance. J. Comput. Biol., 21(1):1–15, 2013.

[62] L. A. B. Kowada, D. Doerr, S. Dantas, and J. Stoye. New genome similarity
measures based on conserved gene adjacencies. In Proc. of RECOMB 2016, to
appear, LNBI. Springer Verlag, Berlin, 2016.

[63] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res.
Logist. Quart., 2:83–97, 1955.

[64] M. Lechner, S. Findeiß, L. Steiner, M. Marz, P. F. Stadler, and S. J. Prohaska.
Proteinortho: Detection of (co-)orthologs in large-scale analysis. BMC Bioinfor-
matics, 12:124, 2011.

[65] M. Lechner, M. Hernandez-Rosales, D. Doerr, N. Wieseke, A. Thévenin,
J. Stoye, R. K. Hartmann, S. J. Prohaska, and P. F. Stadler. Orthology detec-
tion combining clustering and synteny for very large datasets. PLoS ONE,
9(8):e105 015, 2014.

113

[66] E. Lerat, V. Daubin, and N. A. Moran. From gene trees to organismal phy-
logeny in prokaryotes: The case of the γ-proteobacteria. PLoS Biol., 1(1):e19,
2003.

[67] H. Li. TreeFam: A curated database of phylogenetic trees of animal gene
families. Nucleic Acids Res., 34(90001):D572–D580, 2006.

[68] L. Li, C. J. Stoeckert, and D. S. Roos. OrthoMCL: Identification of ortholog
groups for eukaryotic genomes. Genome Res., 13(9):2178–2189, 2003.

[69] X. Ling, X. He, and D. Xin. Detecting gene clusters under evolutionary con-
straint in a large number of genomes. Bioinformatics, 25(5):571, 2009.

[70] J. Liu and B. Rost. Domains, motifs and clusters in the protein universe. Curr.
Opin. Chem. Biol., 7(1):5–11, 2003.

[71] A. Lomsadze, P. D. Burns, and M. Borodovsky. Integration of mapped RNA-
Seq reads into automatic training of eukaryotic gene finding algorithm. Nu-
cleic Acids Res., 42(15):e119, 2014.

[72] F. V. Martinez, P. Feijão, M. D. V. Braga, and J. Stoye. On the family-free DCJ
distance. In Proc. of WABI 2014, vol. 8701 of LNCS, 174–186. 2014.

[73] D. P. Mindell, M. D. Sorenson, and D. E. Dimcheff. Multiple independent
origins of mitochondrial gene order in birds. Proc. Natl. Acad. Sci. U.S.A.,
95(18):10 693–10 697, 1998.

[74] A. Mira, L. Klasson, and S. G. E. Andersson. Microbial genome evolution:
sources of variability. Curr. Opin. Microbiol., 5(5):506–512, 2002.

[75] J. Misra and D. Gries. A constructive proof of Vizing’s theorem. Inform. Process.
Lett., 41(3):131–133, 1992.

[76] B. M. Moret, L. S. Wang, T. Warnow, and S. K. Wyman. New approaches
for reconstructing phylogenies from gene order data. Bioinformatics, 17 Suppl
1:S165–73, 2001.

[77] C. L. Morrison, A. W. Harvey, S. Lavery, K. Tieu, Y. Huang, and C. W. Cun-
ningham. Mitochondrial gene rearrangements confirm the parallel evolution
of the crab-like form. Proc. Biol. Sci., 269(1489):345–350, 2002.

[78] J. H. Nadeau and B. A. Taylor. Lengths of chromosomal segments conserved
since divergence of man and mouse. Proc. Natl. Acad. Sci. U.S.A., 81(3):814–818,
1984.

[79] T. Ohta. Gene Families: Multigene Families and Superfamilies. John Wiley & Sons,
Ltd, 2001.

114

[80] G. Ostlund, T. Schmitt, K. Forslund, T. Köstler, D. N. Messina, S. Roopra,
O. Frings, and E. L. L. Sonnhammer. InParanoid 7: New algorithms and tools
for eukaryotic orthology analysis. Nucleic Acids Res., 38(Database issue):D196–
D203, 2010.

[81] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. J. Comp. Sys. Sci., 43(3):425–440, 1991.

[82] P. M. Pardalos and N. Desai. An algorithm for finding a maximum weighted
independent set in an arbitrary graph. Int. J. Comput. Math., 38(3–4):163–175,
1991.

[83] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.
Elec. Colloq. on Comput. Complexity, 71:5, 1998.

[84] C. Pesquita, D. Faria, H. Bastos, A. E. Ferreira, A. O. Falcão, and F. M. Couto.
Metrics for GO based protein semantic similarity: a systematic evaluation.
BMC Bioinformatics, 9(Suppl 5):S4, 2008.

[85] S. Powell, D. Szklarczyk, K. Trachana, A. Roth, M. Kuhn, et al. eggNOG v3.0:
Orthologous groups covering 1133 organisms at 41 different taxonomic ranges.
Nucleic Acids Res., 40(D1):D284–D289, 2011.

[86] S. Rahmann and G. W. Klau. Integer linear programs for discovering approxi-
mate gene clusters. In Proc. of WABI 2006, vol. 4175 of LNBI, 298–309. 2006.

[87] A. Rajaraman, E. Tannier, and C. Chauve. FPSAC: Fast phylogenetic scaffold-
ing of ancient contigs. Bioinformatics, 29(23):2987–2994, 2013.

[88] N. Saitou and M. Nei. The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4):406–425, 1987.

[89] H. Salgado, M. Peralta-Gil, S. Gama-Castro, A. Santos-Zavaleta, L. Muñiz-
Rascado, et al. RegulonDB v8.0: Omics data sets, evolutionary conservation,
regulatory phrases, cross-validated gold standards and more. Nucleic Acids
Res., 41(Database issue):D203–D213, 2013.

[90] S. L. Salzberg, A. L. Delcher, S. Kasif, and O. White. Microbial gene identi-
fication using interpolated Markov models. Nucleic Acids Res., 26(2):544–548,
1998.

[91] D. San Mauro, D. J. Gower, R. Zardoya, and M. Wilkinson. A hotspot of gene
order rearrangement by tandem duplication and random loss in the vertebrate
mitochondrial genome. Mol. Biol. Evol., 23(1):227–234, 2006.

[92] D. Sankoff. Edit distances for genome comparisons based on non-local opera-
tions. In Proc. of CPM 1992, vol. 644 of LNCS, 121–135. 1992.

115

[93] D. Sankoff. Genome rearrangement with gene families. Bioinformatics,
15(11):909–917, 1999.

[94] D. Sankoff and M. Blanchette. Multiple genome rearrangement and break-
point phylogeny. J. Comp. Biol., 5:555–570, 1998.

[95] D. Sankoff, D. Bryant, M. Deneault, B. F. Lang, and G. Burger. Early eukaryote
evolution based on mitochondrial gene order breakpoints. J. Comput. Biol., 7(3–
4):521–535, 2000.

[96] D. Sankoff, R. Cedergren, and Y. Abel. Genomic divergence through gene
rearrangement. vol. 183 of Meth. Enzymol., 428 – 438. Academic Press, 1990.

[97] D. Sankoff and N. El-Mabrouk. Duplication, rearrangement and reconciliation.
In Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dy-
namics, Map alignment and the Evolution of Gene Families, vol. 1 of Comput. Biol.
Series, 537–550. Springer Netherlands, 2000.

[98] D. Sankoff and P. Trinh. Chromosomal breakpoint reuse in genome sequence
rearrangement. J. Comput. Biol., 12(6):812–821, 2005.

[99] T. Schmidt and J. Stoye. Quadratic time algorithms for finding common in-
tervals in two and more sequences. In Proc. of CPM 2004, vol. 3109 of LNCS,
347–358. 2004.

[100] R. Shao, M. Dowton, A. Murrell, and S. C. Barker. Rates of gene rearrangement
and nucleotide substitution are correlated in the mitochondrial genomes of
insects. Mol. Biol. Evol., 20(10):1612–1619, 2003.

[101] G. Shi, M.-C. Peng, and T. Jiang. MultiMSOAR 2.0: An accurate tool to identify
ortholog groups among multiple genomes. PLoS ONE, 6(6):e20 892, 2011.

[102] J. S. J. Shi and J. T. J. Tang. An experimental evaluation of corrected inversion
and DCJ distance metric through simulations. Int. Conf. Bioinform. Biomed.
Eng., 1–4, 2010.

[103] N. Song, R. D. Sedgewick, and D. Durand. Domain architecture comparison
for multidomain homology identification. J. Comput. Biol., 14(4):496–516, 2007.

[104] M. Stanke and S. Waack. Gene prediction with a hidden Markov model and
a new intron submodel. Bioinformatics, 19 Suppl 2:ii215–25, 2003.

[105] J. Tang and B. M. E. Moret. Phylogenetic reconstruction from gene-
rearrangement data with unequal gene content. In Proc. of WADS 2003, vol.
2748 of LNCS, 37–46. 2003.

116

[106] E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics, 10:120, 2009.

[107] R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, et al. The
COG database: An updated version includes eukaryotes. BMC Bioinformatics,
4:41, 2003.

[108] I. H. Toroslu and G. Üçoluk. Incremental assignment problem. Inform. Sciences,
177(6):1523–1529, 2006.

[109] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica, 26(2):290–309, 2000.

[110] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret.
Analiz No., 3:25–30, 1964.

[111] R. M. Waterhouse, E. M. Zdobnov, F. Tegenfeldt, J. Li, and E. V. Kriventseva.
OrthoDB: The hierarchical catalog of eukaryotic orthologs in 2011. Nucleic
Acids Res., 39(Database issue):D283–8, 2011.

[112] G. Watterson, W. Ewens, T. Hall, and A. Morgan. The chromosome inversion
problem. J. Theor. Biol., 99(1):1–7, 1982.

[113] S. Whelan and N. Goldman. A general empirical model of protein evolution
derived from multiple protein families using a maximum-likelihood approach.
Mol. Biol. Evol., 18(5):691–699, 2001.

[114] A. W. Xu and B. M. E. Moret. GASTS: Parsimony scoring under rearrange-
ments. In Proc. of WABI 2011, vol. 6833 of LNBI, 351–363. 2011.

[115] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

[116] Z. Yin, J. Tang, S. Schaeffer, and D. Bader. A Lin-Kernighan heuristic for the
DCJ median problem of genomes with unequal contents. In Proc. of COCOON
2014, vol. 8591 of LNCS, 227–238. 2014.

[117] M. Zhang and H. W. Leong. Identifying positional homologs as bidirectional
best hits of sequence and gene context similarity. In Proc. of ISB 2011, 117–122.
2011.

[118] Q. Zhu, Z. Adam, V. Choi, and D. Sankoff. Generalized gene adjacencies,
graph bandwidth, and clusters in yeast evolution. IEEE/ACM Trans. Comput.
Biol. Bioinform., 6(2):213–220, 2009.

117

	1 Introduction
	2 Background
	2.1 Genetic information
	2.2 Evolutionary modifications
	2.3 Evolutionary relationships
	2.4 Genome model
	2.4.1 Genomes, chromosomes, and genes
	2.4.2 Telomeres

	2.5 The Family-free Principle

	3 Family-free adjacencies
	3.1 Breakpoint distance
	3.2 Pairwise family-free adjacencies
	3.3 Family-free adjacencies for more than two genomes
	3.4 Computational complexity of pairwise family-free adjacencies
	3.4.1 Reduction from exemplar breakpoint distance problem
	3.4.2 Maximum matchings in solutions to problem FF-Adjacencies

	3.5 Bounds
	3.6 An exact solution to problem FF-Adjacencies
	3.7 Speeding up computations
	3.7.1 Identifying anchors in the gene similarity graph
	3.7.2 Remaining subgraph test

	3.8 A heuristic solution to problem FF-Adjacencies
	3.9 Experimental results and discussion
	3.9.1 Simulated genome evolution
	3.9.2 Runtime
	3.9.3 Quality of orthology assignments
	3.9.4 Experimental results on a biological dataset
	3.9.5 Discussion

	4 Family-free median
	4.1 Gene family-based median of three
	4.2 A family-free generalization
	4.3 Complexity of problem FF-Median
	4.3.1 Reduction

	4.4 An exact solution to problem FF-Median
	4.5 The effect of gene family evolution on family-free medians
	4.6 Solving problem FF-Adjacencies for three genomes

	4.7.1 Simulations
	4.7.2 Experiments on a biological dataset
	4.7.3 Discussion
	5 Family-free synteny
	5.1 Generalized adjacencies
	5.2 Synteny and gene clusters
	5.3 Family-free syntenic blocks
	5.3.1 A naïve approach
	5.3.2 A practical approach

	5.4 Common intervals in indeterminate strings
	5.5 Discovering weak common intervals
	5.5.1 Updating table Int
	5.5.2 Computing table Succ

	5.6 Discovering strict common intervals
	5.7 Discovering approximate weak common intervals
	5.8 A runtime heuristic for discovering approx. weak common intervals
	5.9 Results and Discussion
	5.9.1 Gene family-based dataset
	5.9.2 Gene family-free dataset
	5.9.3 Comparison with RegulonDB
	5.9.4 Discussion

	6 Conclusion and outlook
	Bibliography

