Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
teaching:alggrliterature [2022/01/27 14:57]
jstoye [Computational pangenomics]
teaching:alggrliterature [2022/11/21 09:53]
jstoye [Genome assembly Ib: Re-sequencing, comparative (reference-based) assembly]
Line 35: Line 35:
  
 ==== Genome assembly Ib: Re-sequencing,​ comparative (reference-based) assembly ==== ==== Genome assembly Ib: Re-sequencing,​ comparative (reference-based) assembly ====
-A good introduction to comparative genome assembly is [1]. The main algorithmic challenge is to map millions of (most very short) sequence reads onto one or more referene geneome(s). Suitable mapping algorithms for this task are [[http://​bibiserv.cebitec.uni-bielefeld.de/​swift/​|SWIFT]] [2], [[http://​bowtie-bio.sourceforge.net/​index.shtml|Bowtie]] [6], ELAND (Cox, unpublished),​ [[http://​maq.sourceforge.net/​|MAQ]] [3], [[http://​rulai.cshl.edu/​rmap/​|RMAP]],​ [[http://​soap.genomics.org.cn/​|SOAP]] [4], [[http://​compbio.cs.toronto.edu/​shrimp/​|SHRiMP]],​ SeqMap [5], TAGGER [7], ZOOM [8], [[http://​bio-bwa.sourceforge.net/​bwa.shtml|BWA]] [9], GSNAP [10], SARUMAN [11], SSAHA2 [12] etc. Methods especially suited for mapping SOLiD reads are presented in [13,14]. +A good introduction to comparative genome assembly is [1]. The main algorithmic challenge is to map millions of (most very short) sequence reads onto one or more referene geneome(s). Suitable mapping algorithms for this task are [[http://​bibiserv.cebitec.uni-bielefeld.de/​swift/​|SWIFT]] [2], [[http://​bowtie-bio.sourceforge.net/​index.shtml|Bowtie]] [6], ELAND (Cox, unpublished),​ [[http://​maq.sourceforge.net/​|MAQ]] [3], [[http://​rulai.cshl.edu/​rmap/​|RMAP]],​ [[http://​soap.genomics.org.cn/​|SOAP]] [4], [[http://​compbio.cs.toronto.edu/​shrimp/​|SHRiMP]],​ SeqMap [5], TAGGER [7], ZOOM [8], [[http://​bio-bwa.sourceforge.net/​bwa.shtml|BWA]] [9], GSNAP [10], SARUMAN [11], SSAHA2 [12], NextGenMap ​[13], etc.
  
   - M. Pop, A. Phillippy, A. L. Delcher, and S. L. Salzberg. [[https://​doi.org/​10.1093/​bib/​5.3.237|Comparative genome assembly]]. //Briefings in Bioinformatics//​ **5**(3):​237-248,​ 2004.    - M. Pop, A. Phillippy, A. L. Delcher, and S. L. Salzberg. [[https://​doi.org/​10.1093/​bib/​5.3.237|Comparative genome assembly]]. //Briefings in Bioinformatics//​ **5**(3):​237-248,​ 2004. 
Line 49: Line 49:
   - J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski, J. Stoye, A. Goesmann. [[https://​doi.org/​10.1093/​bioinformatics/​btr151|Exact and complete short read alignment to microbial genomes using GPU programming]]. //​Bioinformatics//​ **27**(10): 1351-1358, 2011.    - J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski, J. Stoye, A. Goesmann. [[https://​doi.org/​10.1093/​bioinformatics/​btr151|Exact and complete short read alignment to microbial genomes using GPU programming]]. //​Bioinformatics//​ **27**(10): 1351-1358, 2011. 
   - Z. Ning, A.J. Cox. [[https://​doi.org/​10.1101/​gr.194201|SSAHA:​ A Fast Search Method for Large DNA Databases]]. //Genome Res.// **11**(10): 1725-1729, 2001.    - Z. Ning, A.J. Cox. [[https://​doi.org/​10.1101/​gr.194201|SSAHA:​ A Fast Search Method for Large DNA Databases]]. //Genome Res.// **11**(10): 1725-1729, 2001. 
-  - LNoéMGîrdeaGKucherov. [[https://​doi.org/​10.1007/978-3-642-12683-3_25|Seed Design Framework for Mapping SOLiD Reads]]. Proceedings of RECOMB 2010, LNBI 6044, 384-396, 2010.  +  - FJ. SedlazeckPReschenederAvon Haeseler. [[https://​doi.org/​10.1093/bioinformatics/​btt468|NextGenMap: fast and accurate read mapping in highly polymorphic genomes]]. //Bioinformatics// **29**(21): 2790-27912013.
-  - M. Csűrös, Sz. Juhos, A. Bérces. [[https://doi.org/10.1007/978-3-642-15294-8_15|Fast Mapping and Precise Alignment of AB SOLiD Color Reads to Reference DNA]]. Proceedings of WABI 2010, LNBI 6293, 176-1882010+
   - L. Oesper, A. Ritz, S. J. Aerni, R. Drebin, B. J. Raphael. [[https://​doi.org/​10.1186/​1471-2105-13-S6-S10|Reconstructing cancer genomes from paired-end sequencing data]]. //BMC Bioinformatics//​ **13**(Suppl. 6):S10, 2012.    - L. Oesper, A. Ritz, S. J. Aerni, R. Drebin, B. J. Raphael. [[https://​doi.org/​10.1186/​1471-2105-13-S6-S10|Reconstructing cancer genomes from paired-end sequencing data]]. //BMC Bioinformatics//​ **13**(Suppl. 6):S10, 2012.